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Abstract

The detection of Major Depressive Disorder (MDD) has made significant strides through
the integration of neurocomputing techniques and traditional machine learning methods.
Additionally, digital-based psychological therapy approaches have proven to be reliable
and convenient in aiding depression treatment. However, despite the advancements, de-
tection rates for depression remain insufficient for consistent clinical application. Further-
more, digital psychological therapy approaches are often limited by location and schedul-
ing constraints, reducing their accessibility and effectiveness. To address these challenges,
this thesis proposes two noninvasive methods for detecting MDD using electroencephalo-
gram (EEG) signals, providing clear visualization results and stable accuracy. Addition-
ally, to enhance the effectiveness of psychotherapy for MDD patients, this thesis develops
a fine-tuning method for language models and releases a psychotherapy-focused digital
dataset. Lastly, this work introduces a method to integrate the semantic representation
of EEG signals into natural language processing.

In Chapters 2 and 3, I have designed a noninvasive system to visualize dynamic func-
tional brain networks in both depressive patients and healthy controls during Working
Memory (WM) tasks. Two residual neural networks (ResNets), trained on selected EEG
channels and frequencies, effectively detect depression and assess its severity. Indirectional
and directional brain functional dynamics highlight the differences between depressive pa-
tients and healthy controls, providing reliable interpretability of artificial neural network
(ANN) models.

In Chapters 4 and 5, I have proposed a neuroscience-inspired architectural model
incorporating shunting inhibition to develop advanced training and fine-tuning methods
for pre-trained language models. I also have presented a psychotherapy dataset optimized
by Large Language Models (LLMs). The proposed fine-tuning method allows for gating
tunable weights on downstream language tasks, while the psychotherapy dataset enables
LLMs to access professional and widely-accepted therapeutic knowledge.

In Chapter 6, I have introduced a method for enabling LLMs to understand time-
series data by converting it into symbolic series. This tool equips LLMs with an internal
symbolic chain-of-pattern for more effective processing of time-series information.

Collectively, these components form a closed-loop system for depression detection and
psychotherapy support, seamlessly merging EEG signals and natural language processing
to deliver systematic, interactive, and visually interpretable results. Beyond contributing
scientific insights for each individual system, this work establishes a practical framework
for advancing future efforts in depression detection and psychotherapy enhancement.

Keywords: Depression detection, depressive severity scoring, brain computer interface,
parameter efficient fine tuning, large language models, assistant instruction, psychother-
apy chatbot, multi-modality of LLMs, time series.
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Chapter 1

Introduction

Depression, also known as Major Depressive Disorder (MDD), is a prevalent mental health

condition globally. According to the World Health Organization (WHO), it affects ap-

proximately 3.8% of the global population, with a higher prevalence of 5.0% among adults

and 5.7% among individuals aged 60 and older [15]. It is estimated that around 280 mil-

lion people worldwide suffer from depression [15]. Unlike typical mood fluctuations or

brief emotional responses to daily life events, depression becomes particularly concerning

when it is recurrent and of moderate to severe intensity, often leading to significant im-

pairments in daily functioning, including work, school, and family life. In the most severe

cases, depression can result in suicide, which accounts for over 700,000 deaths annually.

Suicide is the fourth leading cause of death among individuals aged 15-29 years.

Despite the availability of effective treatments, over 75% of individuals in low- and

middle-income countries do not receive adequate care for mental health disorders [16].

Barriers to effective treatment include limited resources, a shortage of trained healthcare

providers, and the social stigma surrounding mental illness. Moreover, depression is often

misdiagnosed, with individuals who do not have the disorder sometimes wrongly diag-

nosed and prescribed antidepressants unnecessarily. Misdiagnosis can lead to a range of

complications, including self-medication, substance abuse, inappropriate treatment, social

isolation, and reduced performance in educational or professional settings [17]–[19]. For

mild to moderate depression, Cognitive Behavioral Therapy (CBT) is generally consid-

ered the most effective treatment. For more severe forms of depression, a combination of

psychotherapy and antidepressant medications is the current standard of care [20]–[22].

However, inadequate or delayed treatment can result in relapse and prolonged withdrawal

symptoms [23].

Natural Language Processing (NLP) techniques have become integral in processing

clinical notes and narratives, playing a critical role in handling Electronic Health Record

(EHR) data [24]. One key application is improving clinical documentation by extracting

1
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meaningful information from both structured data (e.g., lab results, vital signs) and un-

structured data (e.g., clinical notes). Techniques like named entity recognition [25] and

text summarization [26] are commonly used to identify relevant health-related entities and

summarize treatment outcomes. Another significant application focuses on the analysis

of EHR data to investigate disease progression [27] and adverse drug reactions [28]. These

studies contribute to a deeper understanding of medical conditions and the effectiveness

of therapeutic interventions. One more EHR application, such as EHRAgent, [29] enables

autonomous code generation and execution to facilitate clinicians in directly interacting

with EHRs using natural language.

This thesis explores how technology can enhance depression detection and support

psychotherapy. Specifically, it focuses on leveraging electroencephalogram (EEG) signals

for depression detection and employing Large Language Models (LLMs) to assist in ther-

apeutic interventions. The aim of this thesis is to make these tools more accessible and

effective for both patients and clinicians, improving the overall efficiency of diagnosis and

treatment.

1.1 Goals of the Thesis

As illustrated in Figure 1.1, this thesis has two primary objectives:

1. Noninvasive Depression Detection: To develop a noninvasive system that uses

EEG signals to assess the severity of depression. This involves analyzing functional

brain networks to decode brain activity, facilitating depression diagnosis and pro-

viding insights into its severity.

2. Psychotherapy Assistance: To provide psychotherapy support through chatbots

powered by LLMs. These chatbots are designed to offer advice and guidance based

on professional psychotherapy knowledge, supporting patients in their treatment

journey.

In the aspect of depression detection, by integrating clinical knowledge of depression

detection with advanced Artificial Neural Networks (ANNs), this system first demon-

strates effective performance in both detecting depression and assessing its severity (as

detailed in Chapter 2). However, visualizing brain abnormalities in depression patients

alone does not yield sufficient insights, as we still do not know which step is abnormal,

in terms of the information processing flow in the brain. The directional flow of brain

networks provides a way to measure the information processing flow of the human brain.

Thus, Chapter 3 introduces a noninvasive visualization method for mapping directional

brain networks during working memory tasks using EEG signals. Additionally, there are
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two works that contribute to the psychotherapy aids. To further enhance the performance

of pretrained language models on specific downstream tasks, Chapter 4 presents a novel

fine-tuning approach—Inhibited Gate Multilayer Perceptions (MLPs), inspired by the

shunting inhibition mechanism. Moreover, Chapter 5 explores how psychotherapy data,

refined and augmented by GPT-4, can be used to train other LLMs to generate effective

and reliable therapeutic aids. Besides, because that LLMs cannot understand and analyze

time series very well, especially EEG signals, Chapter 6 focuses on developing multimodal

capabilities in LLMs, specifically enabling them to process time-series data via Adaptive

Brownian Bridge-based symbolic Aggregation (ABBA), thereby bridging the gap between

EEGs signals and LLMs. We finally make a close-loop that can fuse EEG signals and

natural languages together, and this system also can provide with a systematic result,

visually and interactively.

Figure 1.1: The whole framework of depression detection and psychotherapy assistance
in this thesis.

1.2 Challenges

One of the challenges in treating depression is accurately diagnosing the condition and

assessing its severity. Currently, doctors use brain scans, such as EEGs, to measure brain

activity and identify patterns indicative of depression. In this thesis, we employ a tech-

nique that combines EEGs data with machine learning to detect and assess the severity

of depression. Another challenge is that psychotherapy, while essential for treating de-

pression, is often difficult to access due to the need for trained therapists. By leveraging
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LLMs—advanced Artificial Intelligence (AI) models trained to understand and generate

human-like language—we aim to develop chatbots capable of providing basic psychother-

apy support. This could make therapy more accessible and reduce the burden on human

therapists.

1.2.1 Detecting Depression

Challenges of Detecting Depression and Scoring Depressive Severity

Figure 1.2: The framework of depressive severity scoring system.

Depression is widely categorized as non-depressed, mild, moderate, and severe, ac-

cording to the severity of the depressive symptoms [30]. However, a descriptive study has

shown that the rate of misdiagnosis of MDD is as high as 65.9% [19]. This means that

the primary accuracy rate is less than 35% [19]. Failure to correctly diagnose MDD is

caused by inadequate training of clinicians, as well as reasons that patients are not given

appropriate appointments, medical examinations and proper treatments at the early stage

[19], [31]. The techniques used for depressive disorder detection can be divided into three

rough categories: (1) questionnaires, (2) clinical sensors (such as, Magnetic Resonance

Imaging (fMRI), EEG and Functional near-infrared spectroscopy (fNIRS)) and (3) ubiq-

uitous sensors (such as, accelerometer sensors, WIFI, GPS and so on). There are three

most popular questionnaires: the DSM-IV Axis I Disorders, Clinician Version (SCID-CV)

[32], the Hamilton Depression Rating Scale (HAMD) [33], and the Beck Depression In-

ventory (BDI) [34], and all these three have strong histories of use in the psychological

sciences. However, this detection method heavily relies on the knowledge and experience
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of psychologists. Existing tools used by psychologists and physicians for diagnosing MDD

have three main challenges:

(1) they are time-consuming and need to be administrated by well-trained engineers

or by professional clinicians [35], [36]; (2) they cannot score depressive severity [37], [38];

(3) there is no interpretable result provided, for example, brain topological maps for the

visualization purpose. The challenge is now becoming to provide a new clinical biomarker,

to ensure the precision and a quick response. We will discuss this topic in Chapter 2.

Challenges of Non-invasive Visualization Techniques

Non-invasive brain functional network visualization techniques are methods used to map

and study the connections and activity within the brain without the need for surgical

intervention. These techniques are crucial in understanding brain function, diagnosing

neurological disorders, and monitoring treatment effects. Here are some of the key non-

invasive techniques, along with their disadvantages.

fMRI: While functional magnetic resonance imaging (fMRI) offers high spatial reso-

lution and detailed brain activity maps, it has several limitations in clinical and research

contexts. These include high cost, both in terms of equipment and maintenance, and

poor temporal resolution, as fMRI detects blood oxygenation levels that change slowly in

response to neuronal activity. This makes it difficult to capture fast neuronal processes,

which are crucial for understanding dynamic brain activity, especially in mental health

disorders like depression. Additionally, fMRI has contraindications, as it is unsuitable for

patients with metal implants, pacemakers, or severe claustrophobia. In the context of de-

pression severity, fMRI has been used to identify biomarkers such as altered connectivity

in regions like the prefrontal cortex and amygdala, which are linked to mood regulation

[39], [40]. However, these markers are not always specific or consistent across individuals,

limiting its use in personalized diagnosis.

EEG: Electroencephalography (EEG) offers several advantages, including low cost,

portability, and excellent temporal resolution, making it well-suited for tracking the dy-

namics of brain activity in real time. However, it suffers from poor spatial resolution,

which limits its ability to pinpoint the exact location of brain activity. EEG signals are

also highly susceptible to noise and artifacts, such as those from muscle activity, eye move-

ments, or electrical interference. Additionally, EEG primarily captures cortical activity,

meaning it may not provide insights into deeper brain structures that play a role in depres-

sion, such as the hippocampus or subcortical regions [41]. Despite these limitations, EEG

has been widely used in depression research, with studies showing altered brain wave pat-

terns, such as increased theta and decreased alpha activity in the prefrontal cortex, that

correlate with the severity of depressive symptoms [42]. Quantifying these patterns could
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potentially serve as a means for assessing depression severity and treatment response.

fNIRS: Functional near-infrared spectroscopy (fNIRS) provides a less invasive, portable,

and relatively low-cost alternative to fMRI, offering real-time monitoring of brain activity

through the measurement of oxygenated and deoxygenated hemoglobin in the cortical

regions. However, it has limited spatial resolution compared to fMRI, as it primarily cap-

tures signals from the cortical surface and cannot assess deeper brain structures involved

in depression, such as the amygdala or hippocampus. Additionally, its depth penetration

is restricted, limiting its utility in understanding brain activity in more complex regions

of the brain. fNIRS is also vulnerable to motion artifacts, which can distort readings,

especially in patient populations where movement may be more common (e.g., elderly

or pediatric groups). Despite these challenges, fNIRS has shown promise in identifying

brain activity patterns associated with depression, particularly in the prefrontal cortex.

Research has demonstrated that fNIRS can detect changes in brain oxygenation levels

that correspond with the severity of depressive symptoms, which may offer a potential

marker for monitoring treatment efficacy [43], [44].

Each non-invasive brain functional network visualization technique offers unique strengths

and weaknesses. fMRI provides detailed spatial information but at a high cost and with

limited temporal resolution. fNIRS offers portability and safety but struggles with depth

and resolution. EEG excels in temporal resolution but have limitations in spatial accu-

racy. The choice of technique depends on the specific research or clinical needs, balancing

the trade-offs between spatial and temporal resolution, cost, safety, and practicality. EEG

source analysis [45] provides a noninvasive way to construct the directional brain networks

which can visualize the brain dynamic activity under various tasks. In Chapter 3, we will

discuss this topic.

1.2.2 Psychotherapy Using Large Language Models

Challenges of Fine-tuning Language Models

Fine-tuning, the process of updating the parameters of pre-trained Language Models

(LMs), has demonstrated effectiveness across a variety of downstream NLP tasks [46]–

[48]. However, traditional fine-tuning methods often encounter inefficiencies due to redun-

dant parameters in fully pre-trained models, which can impede adaptation to new tasks

[46], [49]. To address this issue, previous research has explored methods that adapt only

specific vectors or introduce additional parameters while keeping most of the pre-trained

parameters fixed. This approach enhances operational efficiency by loading task-specific

parameters associated with the pre-trained models prior to deployment. Low-Rank Adap-

tion (LoRA) [48] successfully achieves this goal by mitigating inference latency, which in
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turn helps extend model depth or reduce the usable sequence length in models [47], [49],

[50], striking a balance between efficiency and quality. The challenges in fine-tuning

pre-trained LMs for Natural Language Understanding (NLU) downstream tasks involve

reducing the number of tuned weights and accurately approximating the update of pre-

trained weights derived from LMs [46]–[49]. Effectively selecting relevant knowledge from

pre-trained LMs is crucial to overcoming these challenges. This raises the question: why

can’t we directly suppress ”redundant” knowledge during fine-tuning while preserving

relevant information?

In the prior work of LoRA [48], authors only used the similarity matrix to compare the

difference between LoRA fine-tuning and fully fine-tuning methods. There is no straight

forward visualization result that can show us which part of attention weights has been

tuned by such methods. In addition, when using LoRA fine-tuning method on LMs, we

found that although the low rank ”bottleneck” can compress information and reweight

the pre-trained parameters, such compressed information always contains noise and task-

irrelevant knowledge. In Chapter 4, this topic will be discussed and solved.

Challenges of Developing Psychotherapy Chatbots Using Large Language Mod-

els

Psychotherapy Domain General Domain

Assis-Instr

Messy

Psychotherapy

 Embeddings

LLM-Friendly

Psychotherapy

 Embeddings

General

Knowledge

 Embeddings

Figure 1.3: A semantic graph that describes how Assistant-Instruction can change the
professional embedding to a common embedding. A successful model is expected to use
the provided instructions (including task and domain definition examples) to response to
professional evaluation.

LLMs have demonstrated impressive generalization capabilities, such as in-context

learning [51], chain-of-thoughts reasoning [52], and biomedical diagnosing [53]. Instruction-

tuning of LLMs has enabled them to follow natural language instructions and perform

real-world tasks [54]. Two main methods have been developed for instruction-tuning

LLMs: (1) fine-tuning the model on a wide range of tasks using human-annotated prompts

and feedback [55], and (2) supervised fine-tuning using public benchmarks and datasets



CHAPTER 1. INTRODUCTION 8

augmented with manually or automatically generated instructions [56]. Reinforcement

Learning on Human Feedback (RLHF) has proven to be an effective way to improve

LLMs in various domains, such as medicine [57], knowledge graphs [58], or biomedical

applications [59], but it comes with a high cost. Natural instructions [54], and even

un-natural instructions [60], can provide knowledge in multiple domains, but LLMs pre-

trained on vast corpora (e.g., Llama1 [61], Llama2 [62] and Llama3 [63] containing books,

common crawled conversations, arxiv articles, GitHub, C4, and Wikipedia data) still re-

quire additional professional knowledge, especially from domain experts. Self-Instruct

tuning [64], [65] and Guess-Instruction tuning methods have shown better performance

in aligning LLMs with human intent by learning from instruction-following data gener-

ated by state-of-the-art instruction-tuned teacher LLMs (e.g., GPT-3, GPT-3.5, and even

GPT-4). These lines of instruction-tuning research have proven effective in improving the

zero and few-shot generalization abilities of LLMs.

We would like to propose one dataset that contains knowledge of professional psy-

chotherapy and knowledge in the common domain of the pretrained LLMs. This dataset

will include a set of instructions, denoted as It, where each instruction specifies a partic-

ular domain t using natural language. Each domain t contains nt or more input-output

examples {(Xt,i, Yt,i)}nt
i=1. Our hypothesis is that each domain t has unique characteris-

tics, as illustrated in the left panel of Figure 1.3. The goal is for a model M to produce

the correct output based on the domain-specific instruction and related input, following

M(It, Xt,i) = Yt,i for i ∈ {1, . . . , nt}. In practice, instructions are structured as prompts

such as “Provide suggestions or comments on addressing and alleviating the following

topic,” with instance inputs such as “addictive disorders.” Sometimes, the boundaries

between the instruction and input from instances might blur. For instance, with in-

structions like “Summarize the description and explain the following concept in the [***]

domain, adding relevant background knowledge,” and input instances such as “Addiction

and Spiritual Crisis,” the instruction domain can overlap with other domains.

Specific professional knowledge may not always fit cleanly within instructions or out-

puts, as overlapping domains can introduce unrelated information, potentially destabi-

lizing the training process. To enhance diversity and robustness in the data format, we

allow additional knowledge and fine-tuning adjustments from external models (for exam-

ple, setting Y = Y + Y ′, where Y ′ is revised by GPT-4 and incorporated back into the

output). The right panel of Figure 1.3 illustrates the challenge of making data LLM-

friendly. Thus, in Chapter 5, we use LLMs to structure instructions, inputs, and outputs,

enhancing clarity and consistency.
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Figure 1.4: The integration of time series and LLMs demonstrates potential in solving
complex real-world problems.

Challenges of Large Language Models on Time Series

With the integration of LLMs, time series analysis is undergoing significant transformation

[66], [67]. Time series models are conventionally designed for specific tasks, and they

depend heavily on prior domain knowledge and extensive model tuning. Existing studies,

such as [66]–[68], lack assurances of effective knowledge updates and validations on specific

time series tasks.

By aligning time series and natural language, large language and specialistic time

series models constitute a new technology paradigm, where the LLMs is prompted with

both time series and text-based instructions [69]. In this paradigm, time series and textual

information provide essential contexts, LLMs contribute internal knowledge and reasoning

capabilities, and time series models offer fundamental guarantees of pattern recognition.

This novel integration is depicted in Figure 1.4, where the successful fusion of these

components showcases the potential of a general-purpose unified system in next-generation

time series analysis. Therefore, the challenge is to develop one tool that can transform

the internal patterns of time series to the contents that LLMs can recognize (the Step

1 of Figure 1.4). Moreover, this tool should also transform the generated contents back

to time series (especially on time series forecasting tasks), so as to offer the time series

analysis assistant (the Step 2 of Figure 1.4). Symbolic approximation methods, such as

SAX [70] and ABBA [71], [72] offer an potential way to achieve it. Then, we review

existing methods and discuss the potential solution in Chapter 6.
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1.3 Thesis Outline

In this thesis, I aim to explore the topics posed above, with the goal of broadening our

understanding of both depressive severity detection and the use of LLMs in depression psy-

chotherapy—an area that remains relatively unexplored. Chapter 2 examines how we use

brain signals to classify depression and assess its severity. Chapter 3 investigates brain ac-

tivity during tasks involving memory and concentration by using a non-invasive technique,

which can be affected by depressive symptoms. Chapter 4 introduces a novel fine-tuing

method for enhancing LLMs to offer more accurate therapeutic support. Chapter 5 fo-

cuses on developing psychotherapy chatbots trained on public therapeutic conversations.

Chapter 6 delves into the ability of LLMs to analyze time series data. The structure of

this thesis is primarily based on the following five publications:

1. Kang, C.; Novak, D.; Yao, X.; Xie, J.; Hu, Y#. (2023). ”Classifying and Scoring

Major Depressive Disorders by Residual Neural Networks on Specific Frequencies

and Brain Regions,” in IEEE Transactions on Neural Systems and Rehabilitation

Engineering, vol. 31, pp. 2964-2973, 2023, doi: 10.1109/TNSRE.2023.3293051.

2. Kang, C.*; Li, Y.*; Novak, D.; Zhang, Y.; Zhou, Q.; Hu, Y#. (2020). ”Brain

Networks of Maintenance, Inhibition and Disinhibition During Working Memory,”

in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28,

no. 7, pp. 1518-1527, 2020, doi: 10.1109/TNSRE.2020.2997827.

3. Kang, C.#; Prokop, J.; Tong, L.; Zhou, H.; Hu, Y.; Novak, D. (2024). InA: Inhi-

bition Adaption on Pre-trained Language Models. Neural Networks, 178, 106410.

https://doi.org/10.1016/j.neunet.2024.106410

4. Kang, C.#; Novak, D.; Urbanova, K.; Cheng, Y.; Hu, Y. (2024). Domain-Specific

Improvement on Psychotherapy Chatbots Using Assistant. 2024 IEEE International

Conference on Acoustics, Speech, and Signal Processing Workshops, Seoul, Republic

of Korea, 2024, pp. 351-355, doi: 10.1109/ICASSPW62465.2024.10626529.

5. Carson, E.; Cheng, X.#; Kang, C#. (2024). LLM-ABBA: Large Language Models

Understand Time Series Via Symbolic Approximation. (Under review on IEEE

Transactions on Signal Processing).

In Chapter 2, we constructed abnormal brain network connections related to depression

using EEGs signals. Based on these abnormal connections, we examined the feasibility of

using EEGs to detect depression and assess the severity of the depression. To validate this

method, we collected EEG data from 52 healthy and 48 depressed participants from one
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university and one hospital, now publicly available to researchers. We found that EEG

signals from the beta band were particularly effective for depression classification, and

the selected channels performed better in scoring depressive severity. This chapter also

revealed distinctive brain connectivity patterns, particularly the increased delta deacti-

vation coupled with strong beta activation as depression severity increases. We conclude

that the model developed in this chapter is reliable for classifying depression and assess-

ing depressive severity, offering physicians a valuable topological map and a quantitative

assessment of depressive severity based on EEG signals.

In Chapter 3, we used Phase Lock Coherence (PLC) and General Partial Directed

Coherence (GPDC) to analyze connections among four adaptively fitted EEG sources,

applying previously published models to describe brain circuits involved in maintenance,

inhibition, and disinhibition. Using the classical n-back visual task, we recruited 45 mental

health undergraduates and found that the bilateral Prefrontal Cortex (PFC) plays a

crucial role in cognitive components such as rehearsal, inhibition, and disinhibition. These

findings suggest that the maintenance circuit helps sustain positive cognitive components,

inhibition reduces energy consumption by halting repetitive functions, and disinhibition

activates new brain activity to focus on novel tasks.

In Chapter 4, we proposed a novel fine-tuning method, Inhibition Adaption (InA),

inspired by neuroscience. The InA method reduces the number of tunable parameters

while reweighting knowledge from pre-trained LMs through an inhibition mechanism. By

inserting a small trainable vector into the Transformer attention architecture and setting

thresholds to eliminate irrelevant knowledge, we found that InA outperforms other fine-

tuning methods on large models such as BERTlarge, RoBERTalarge, and DeBERTalarge

for tasks like text classification and question answering.

In Chapter 5, we proposed a domain-specific instruction tuning method for LLMs in

psychotherapy. By fine-tuning pre-trained LLMs on a dataset of therapy conversations,

we showed that our Assistant-Instruction approach improved the linguistic quality of

responses compared to existing State-Of-The-Art (SOTA) models. We also released our

large synthetic dataset to facilitate future research on instruction tuning for LLMs in

psychotherapy.

In Chapter 6, we introduced a time-series compression method, Large Language Model

with Adaptive Brownian Bridge-based symbolic Aggregation (LLM-ABBA), which en-

ables LLMs to analyze time series signals. By representing time series patterns through

symbolic approximation, we avoid training embeddings from scratch and achieve SOTA

performance on tasks such as time series classification, regression, and forecasting. Exten-

sive experiments on well-established datasets demonstrate the advantages of LLM-ABBA.

This thesis concludes with an overarching framework for conceptualizing the detection
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of depressive severity and suggests potential future research directions to advance recovery

from depression.



Chapter 2

Classifying and Scoring Depressive

Disorders

MDD can be evaluated using both advanced neurocomputing methods and traditional

machine learning techniques. This study aims to develop an automated system that

utilizes EEG signals to classify depressive states and score depressive severity based on

specific frequency bands and electrode data. Two Residual Neural Network (ResNet)-

based models—one for classification and the other for regression—are presented, with

EEG monitoring applied to classify depression and score severity levels. Key frequency

bands and brain regions are selected to optimize ResNet performance. The algorithm,

evaluated via 10-fold cross-validation, achieved an accuracy range of 0.371 to 0.571, with

Root-Mean-Square Error (RMSE) between 7.25 and 8.41. After focusing on the beta fre-

quency band and 16 specific EEG channels, the system reached a classification accuracy of

0.871 and an RMSE of 2.80. Our results indicate that the beta band provides more distinct

features for depression classification, while the selected channels enhance the performance

for scoring depressive severity. Additionally, phase coherence analysis revealed distinctive

brain network features, including increased delta deactivation and stronger beta activation

as depression severity increased. The model developed here provides a practical tool for

classifying depression and scoring its severity, offering physicians a method that combines

topological brain network analysis with quantified depressive symptoms. The selected

frequency bands and brain regions significantly improve depression detection and severity

scoring.

2.1 Introduction

MDD is a severe mental illness that significantly increases the risk of suicidal ideation

and behaviors [17]. Individuals with depression often face challenges in receiving an

13
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accurate diagnosis, which can lead to issues such as self-medication, substance abuse,

inadequate treatment, social isolation, and impaired academic or professional performance

[18], [19]. CBT is effective for mild depression, while a combination of psychotherapy

and antidepressant medication is the most effective treatment for severe cases [20]–[22].

However, inadequate treatment can lead to relapse or the persistence of discontinuation

symptoms [23].

Depression severity is commonly categorized as non-depressed, mild, moderate, or se-

vere [30]. However, studies have shown that the misdiagnosis rate for MDD can be as

high as 65.9% [19], implying that the true diagnostic accuracy is less than 35% [19]. This

misdiagnosis stems from insufficient clinician training, inadequate early-stage evaluations,

and limited access to timely treatment [19], [31]. Current diagnostic tools for MDD face

several challenges, such as being time-consuming, requiring specialized training for admin-

istration, lacking the ability to classify severity, and not providing useful visualizations

like brain topological maps [35], [36].

To address these challenges, this study hypothesizes that delta and beta brain activ-

ities are correlated with depression, as indicated by previous research [2], [5], [6], [73],

[74]. In pursuit of early depression detection, we analyze delta and beta brain activity

along with associated brain networks, visualizing the results. The Phase Synchrony Index

(PSI) [2], [5], [6], [73], [74] is computed to construct brain functional networks, selecting

relevant electrodes and frequency bands based on differences in PSI between depressed

and healthy groups. A ResNet classifier is then used to process the selected EEG signals

for depression detection. Additionally, a ResNet regression model is proposed to score

depressive severity. The optimized ResNets for EEG signals are designed to accelerate

computation and diagnosis, making this system a valuable tool for depression detection,

severity monitoring, and evaluating conventional treatments in clinical settings.

Contributions:

1. Demonstrating central-parietal increased delta deactivation and strong beta activa-

tion in the severe depression group during working memory tasks.

2. Proposing a ResNet-based classification model with specific frequencies and brain

regions for more accurate depression detection.

3. Introducing a ResNet regression model that scores depressive severity based on

professional psychologist labels.

The corresponding code and documentation for this study can be found at: https:

//github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI.

https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI
https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI
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The Procedure about Classifying Depression and Scoring Depressive Severities

A3 A4A1 A2

Input: 64*64*18 

Residual Neural 

Network
Output: Label or Score

Whole Frequency

Bands

 (0.1~30Hz)

EEGs

Beta Frequency 

Bands 

(14~30Hz)

EEGs

Input: 16*64*18

Residual Neural 

Network
Output: Label or Score

Figure 2.1: The framework of depressive severity detecting and scoring system using EEG
signals. The entire procedure about classifying depression and scoring depressive severity
(A1 → A2 → A3 → A4).

2.2 Related Works

Early detection of depression is crucial for timely intervention, preventing long-term suf-

fering, and reducing the risk of suicide. In recent years, machine learning techniques have

proven to be valuable tools for improving the accuracy and speed of depression diagnosis.

Significant progress has been made in utilizing medical imaging and electrophysiological

signals, particularly through the extraction of brain networks. Many studies focus on the

use of these signals to build diagnostic models. The workflow illustrated in Figure 2.1

demonstrates the integration of these methods. Prior research, including [2], [5], [6], has

highlighted distinct differences in delta and beta brain activity between individuals with

depression and healthy controls. Building on these insights, we propose a specialized sys-

tem, outlined in Figure 2.1. The process begins with the calculation of the PSI between

EEG signals from two electrodes (Steps A1 to A4). The equations for computing PSI are

as follows:

∆θn→m
trialk = θntrialk − θmtrialk,

rn→m =

√{∑N
trialk=1 sin(∆θn→m

trialk)
}2

+
{∑N

trialk=1 cos(∆θn→m
trialk)

}2

N
,

lagn→m = arctan

(∑N
trialk=1 sin(∆θn→m

trialk)∑N
trialk=1 cos(∆θn→m

trialk)

)
,

where ∆θn→m
trialk is the phase difference between two electrodes n and m during the k-th

trial, and N is the number of trials. The term rn→m represents the mean value of the

phase synchronization index, and lagn→m is the average angle across all trials.

Subsequent steps in the workflow (A2 to A4) involve selecting significant frequency
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bands and electrodes from functional brain networks, detecting depression-related fea-

tures, and implementing ResNet models for classification and regression tasks. The clas-

sifier outputs a depression diagnosis, while the regression model scores the severity of

depression.

2.2.1 Brain Regions and Functional Network Extraction

Methods involving functional or structural brain networks are essential in diagnosing men-

tal health conditions such as bipolar disorder and schizophrenia, with a particular focus

on depression detection through EEG analysis [75]–[77]. Researchers have placed consid-

erable emphasis on the extraction of relevant features during preprocessing to enhance the

accuracy of depression detection. In the initial phase of network construction, indices that

measure interconnections or spectral characteristics between brain regions are computed.

For example, spectral coherence has been used in conjunction with Adaboost classifiers to

identify depressive symptoms based on brain regions during the resting state [78]. The left

and right frontal-prefrontal regions have shown distinct advantages in identifying depres-

sion [79]. Similarly, the absolute power of the theta wave has been a reliable indicator for

distinguishing depressive patients from controls, with classifiers like K-Nearest Neighbor

(KNN) being employed for this task [75]. Brain networks are known to exhibit abnor-

mal cognitive patterns in depressive patients, such as disruptions in the cognitive control

network [80]. Additionally, these networks exhibit characteristic electrophysiological sig-

natures in various frequency bands (e.g., delta, theta, alpha, and beta) [6]. To construct

functional brain networks, the PSI [2], [5], [6], [73], [74] is computed to quantify the syn-

chronization between EEG channels. This is followed by a correlation-based clustering

approach to build convergent brain networks.

In terms of signal processing, Morlet’s wavelet transform is employed to compute the

time-frequency domain and phase angle:

φn
trialk(f, t) =

1√
πδt

exp

(
−t2

2δ2t

)
exp(j2πft),

∆θn→m
trialk = angle (exp (i[φn

trialk(f, t)]))− angle (exp (i[φm
trialk(f, t)])) ,

where φn
trialk(f, t) represents the Morlet wavelet at frequency f , and δt is the standard

deviation of the Gaussian window. These signals are processed using the EEGLAB tool-

box within the MATLAB environment, selecting appropriate wavelet cycles and time-

frequency windows based on prior research [2], [5], [6].
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2.2.2 Utilization of Artificial Neural Networks

Machine learning techniques, particularly ANNs, are pivotal in enhancing the speed and

accuracy of depression diagnosis. Machine learning models such as Support Vector Ma-

chine (SVM), AdaBoost, and Random Forest (RF) are commonly used in clinical practice

with EEG data. A major challenge in training these models is the potential for overfit-

ting, which can arise if too many irrelevant features are included. To address this, only

the most informative channels are selected during the preprocessing stage.

The process of depression detection generally involves three key steps:

1. Psychological Paradigm: Cognitive tasks such as the n-back Working Memory

(WM) task are frequently used to assess the relationship between cognitive function and

depression severity [81], [82]. The n-back paradigm is selected for its ability to manipulate

task difficulty and assess WM capacity, which has been shown to correlate with depressive

symptoms.

2. Feature Extraction: Relevant features are extracted from neuroimaging regions

and electrophysiological signals, often from EEG channels recorded during resting or task-

completion states.

3. Classification and Scoring: Machine learning models are trained to classify

depressive states and score the severity of depression. Traditional machine learning tech-

niques, such as ANN, logistic regression, SVM, and Convolution Neural Network (CNN),

have been used for depression classification. More recently, deep learning methods like

CNNs and Long Short Term Memorys (LSTMs) have demonstrated impressive perfor-

mance in automating feature extraction and scoring depression severity.

For scoring depression severity, previous studies have utilized fMRI data and regres-

sion models, such as kernel partial least squares regression, to evaluate the severity of

symptoms [83]. Our approach, which employs ResNet models trained on EEG data from

the beta frequency band, is aimed at providing an efficient and accurate system for both

classification and severity scoring of depression.

2.3 Methodology

2.3.1 EEG Recording and Participants

The EEG signals used in this study were collected from Shenzhen University and Shenzhen

Kangning Hospital, with approval from the ethics committee of Shenzhen Mental Health

Center. The dataset consists of 52 healthy undergraduate students (mean age: 20.4 ±
9.7 years) and 48 depressed patients (mean age: 34.3 ± 12.1 years). All participants

were screened to ensure they had no history of psychiatric or neurological disorders, and
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they were not taking any medications prior to the experiment. Depressive symptoms

were assessed using the SCID-CV and the 17-item HAMD, administered by professional

psychologists.

2.3.2 Working Memory Experiments

The n-back task, used to assess working memory, was conducted in the E-Prime 5.0

environment. The 0-back task served as a baseline, while the 1-back and 2-back tasks

increased the cognitive load. Participants were presented with letters on a screen and were

required to match or mismatch the current letter with previous ones. Reaction times and

accuracy were recorded, and EEG data were collected during task performance. Only

correct responses were used in subsequent analyses.

2.3.3 EEG Preprocessing

EEG signals were preprocessed according to established protocols [2], which included arti-

fact rejection, band-pass filtering (0.16-30 Hz), and baseline correction. Phase coherence

analysis was performed prior to training the models. This preprocessing step is essen-

tial for the development of an automated system that classifies depression and scores

depressive severity using specific frequency bands and electrodes.

2.3.4 Residual Neural Networks

In Figure 2.2, 64 channels recorded EEG signals over a duration of 2.5 seconds. Sub-

sequently, a down-sampling process reduced the data length from 2500 points to 1250

points. After discarding 98 points from the tail, the input size for the first model was

set as 64× 64× 18. Two residual neural networks were employed to train the EEG data

for 0-back, 1-back, and 2-back tasks. In the second training phase, 16 electrodes selected

using the phase synchronization method resulted in an input size of 16×64×18. The total
size of the EEG data amounted to 22.5 million sampling points (48 depressive patients +

52 healthy controls) * 60 trials * 3 tasks (0-back, 1-back, and 2-back) * 2.5 seconds * 500

sampling rates = 22.5 million. Testing the CNN with 6 residual blocks yielded optimal

performance, with a parameter size of 0.85 million, effectively preventing overfitting or

underfitting issues through proper parameter selection.

Given the widely recognized 65.9% misdiagnosis rate of MDD [19], we set the detection

rate threshold at 70%. Each participant underwent 60 trials, and the depressive proba-

bility for a participant was determined by the ratio of trials with predicted probabilities

exceeding 70% to the total number of trials. If the predicted probability for a subject on

a trial exceeded 70%, the system classified them as 100% depressive for that trial. Finally,
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if, during a trial, 33 out of 40 subjects had probabilities from the ResNet classifier equal

to or greater than 70%, the model’s accuracy rate was 82.5% (33/40). Additionally, the

second ResNet regression model provided the severity score of depression, referencing the

SCID-CV system and the HAMD score.

The Structure of the Residual Nerual Network
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Figure 2.2: The structure of the constructed residual neural network. The input size is
64×64×18 or 16×64×18. Conv+BN+ReLu means the processing of convolution (Conv),
batch normalization (BN) and rectified linear unit (ReLU). FCL is the fully connected
layer. The shortcut is purely forward plus. ×3 means this block should be repeated triple
times.

2.4 Result

2.4.1 Memory load comparison of behavioural results

Table 2.1 shows the significant level between the low and the high depressed group in terms

of response accuracy rate and reaction time during three different working memory tasks

(0-back, 1-back and 2-back). During the 0-back task, there is no significant difference

(P = 0.061) between MDDs with low scores and the MDDs with high scores in terms

of the response accuracy rate. But for the reaction time, the difference is significant

(P = 0.017). In the 1-back task, both the response accuracy rate and the reaction time

show a significant level (P < 0.01). When implementing the 2-back task, the MDDs with

low scores demonstrated a significant difference in response accuracy rate (P < 0.01).

2.4.2 The Connections comparison

We classified the 0-back task as the ”rest-state” and the 2-back task as the cognitive load

condition for WM. A decrease in PSI reflects reduced neuronal activity in the associated

brain regions, suggesting a return to the ”rest-state.” Conversely, an increase in PSI

indicates heightened neuronal activity, reflecting enhanced WM-related processes.
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Table 2.1: The comparison of reaction time and response accuracy rates between two
different memory loads (average ± standard deviation) in two depressive groups.

Memory Load 0-back 1-back 2-back
Scores Low scores High scores Low scores High scores Low scores High scores
Response Ac-
curacy

98.9±1.4 96.3±2.2 92.8±4.7 86.3±3.6 84.9±5.3 75.5±7.6

Reaction Time 545±53 561±47 701±147 751±129 769±176 791±183
Statistics

(the low and
the high)

P value P value P value
Accuracy

Rate
P = 0.061

Reaction
Time

P = 0.017

Accuracy
Rate

P <0.01

Reaction
Time

P <0.01

Accuracy
Rate

P <0.01

Reaction
Time

P = 0.053

Figure 2.3 illustrates the number of significantly connected pairs based on the two

WM tasks (0-back and 2-back). Notably, for PSI decreases, the most pronounced dif-

ferences across the three groups were observed in the delta frequency components. The

high-scoring depressed group predominantly exhibited connections in the theta frequency

band, with no significant differences observed in other frequency bands. In contrast,

when considering PSI increases, the high-scoring depressed group displayed the fewest

delta, theta, and alpha connected pairs. Both depressed groups exhibited more extensive

beta frequency connections, with the low-scoring depressed group demonstrating stronger

connectivity in the delta, theta, and alpha bands compared to the high-scoring group.

To assess the overall impact—defined as the product of the number of significant

pairs and their corresponding PSI values—t-values from a two-sample t-test (P < 0.01)

are presented in Figure 2.4. The most significant frequency component is indicated in

each histogram. Except for Figure 2.4B, which shows a moderate increase in delta band

activity (P < 0.05), the remaining histograms highlight that beta frequency activation

contributes most significantly to the observed group differences.

2.4.3 Clusters between these Three Groups

As illustrated in Figure 2.5A, the comparison of PSI connections reveals a noticeable

decrease in PSI in the depressive group with lower scores, resulting in a sparser electrode

connection pattern. This decrease is further reflected in the flat distribution within the

beta frequency band shown in Figure 2.3. Conversely, the PSI increase depicted in Figure

2.5B shows that the control group does not form a cohesive cluster. In contrast, the

depressive group with low scores tends to concentrate connected pairs in the left parietal

and left central regions, forming what we refer to as Cluster A.

In the comparison between the depressive group with high scores and the control

group (Figure 2.5C, lower panel), the PSI decrease shows that the control group has

fewer connected pairs, primarily in the left frontal and whole parietal regions (Cluster C).

Meanwhile, the depressive group demonstrates nearly complete cerebral connectivity, with

the exception of the occipital areas (Cluster B). Regarding the PSI increase, the high-
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Figure 2.3: The number of the significant pairs in terms of the comparison between 2-back
and 0-back tasks.

scoring depressive group exhibits a more compact connection pattern involving the left

frontal-central and right central-parietal regions. Additionally, connectivity is observed

in the left frontal-temporal and right temporal-parietal regions, forming Cluster D.

Table 2.2: Classification (Accuracy) and scoring depression (RMSE) results (mean and
standard deviation) using whole frequency bands (delta, theta, alpha and beta).

Accuracy Rate
(>0.70)

0-back 1-back 2-back Best Result
0.457±0.063 0.429±0.100 0.514±0.164 0.734 in 2-back

Score Difference
(RMSE)

0-back 1-back 2-back Best Result
8.38±3.22 8.41±3.52 7.73±3.22 3.22 in 2-back

Table 2.3: Classification (Accuracy) and scoring depression (RMSE) results (mean and
standard deviation) using beta frequency bands.

Accuracy Rate
(>0.70)

0-back 1-back 2-back Best Result
0.514±0.217 0.429±0.226 0.371±0.217 0.783 in 0-back

Score Difference
( RMSE)

0-back 1-back 2-back Best Result
7.97±2.25 7.59±1.51 8.05±1.40 4.10 in 0-back

2.4.4 Results of Classifying and Scoring MDD Patients

After completing the preprocessing steps, each subject underwent up to 60 trials, with

substandard trials excluded. The results across the entire frequency band are summarized

in Table 2.2, while the specific outcomes for the beta frequency band are shown in Table
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Table 2.4: Classification (Accuracy) and scoring depression (RMSE) results (mean and
standard deviation) using whole frequency bands (delta, theta, alpha and beta) and se-
lected EEG channels.

Accuracy Rate
(>0.70)

0-back 1-back 2-back Best
0.514±0.217 0.514±0.239 0.571±0.141 0.714 in 1-backs

Score Difference
(RMSE)

0-back 1-back 2-back Best
7.77±3.11 7.25±2.19 7.37±2.14 2.88 in 1-back

Table 2.5: By scaling the size of proposed ResNets, the below shows the classification
(Accuracy) and scoring (RMSE) results using beta frequency band and selected EEG
channels.

ResNet (Size: 2.4M)
Accuracy Rate

(>0.70)
0-back 1-back 2-back Best
0.452±0.302 0.409±0.222 0.414±0.367 0.833 (0-back)

Score Difference
( RMSE)

0-back 1-back 2-back Best
8.12±3.38 8.07±3.44 7.74±3.66 3.02 (0-back)

Default ResNet (Size: 4.6M)
Accuracy Rate

(>0.70)
0-back 1-back 2-back Best
0.429±0.226 0.514±0.126 0.457±0.234 0.871 (2-back)

Score Difference
( RMSE)

0-back 1-back 2-back Best
7.97±3.57 7.83±3.31 7.59±3.83 2.80 (2-back)

2.3. In the second model, the system was expanded to classify depression and assess

depressive severity by focusing on the beta frequency band and selecting 16 significant

electrodes. During the online clustering step using PSI, two clusters, Cluster A and

Cluster D, emerged. The electrodes most frequently connected in both clusters—Fz, F1,

F3, FCz, FC1, FC3, FC5, FT7, FT9, T7, CP3, CP2, CP4, CP6, TP8, and TP10—played

a crucial role in enhancing the performance for classifying depression patients and scoring

their depressive severity. To minimize variability in the results, a 10-fold cross-validation

approach was employed to identify the optimal outcome. For example, Table 2.4 shows a

classification accuracy of 0.714 using the entire frequency bands, while Table 2.5 indicates

that focusing on the beta frequency band achieves an accuracy of 0.871. Ultimately, for the

2-back task within the beta frequency band and using specifically selected electrodes, the

highest accuracy achieved through 10-fold testing was 0.871. Regarding depressive severity

assessment, although a minimum RMSE of 2.8 was achieved in the 2-back task with the

beta frequency band and selected channels (Table 2.5), the overall performance for scoring

depressive severity (Table 2.5) was inferior to that seen with the entire frequency bands

in Table 2.4.

2.5 Discussion

In this study, we define deactivation as the dominance of the rest state, and activation

as the engagement of WM processes. Our results reveal that the low depressive group

exhibits weaker delta deactivations but stronger beta activations. In contrast, the high
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depressive group shows more pronounced delta deactivations and increased beta acti-

vations. As depressive severity increases, there is a notable emergence of beta-related

right central-parietal functional connections in patients with depression. Furthermore,

beta frequency bands play a significant role in distinguishing depressive patients from

healthy controls. Selectively chosen electrodes provide a reliable means of differentiating

depressive patients, and the use of beta frequency bands improves the accuracy of scoring

depressive severity, with selected channels showing substantial scoring advantages.

2.5.1 Potential Inducing Factors for Depression

As depressive symptoms become more severe, individuals with depression exhibit more

pronounced delta deactivations and beta activations. Interestingly, no clear evidence has

been found linking theta and alpha oscillations to depressive states. It is noteworthy that

individuals infected with Human Herpesvirus 6 (HHV-6) show no significant correlation

with theta and alpha EEG oscillations, as reported by [84]. Furthermore, after a 14-

day recovery period following medical intervention, HHV-6-infected patients demonstrate

a noticeable deceleration in theta and delta oscillations [85], suggesting a weakening of

these activities [86]. Additionally, HHV-6 infection has been linked to an increased risk of

mental disorders, particularly depression [87], [88]. Given these findings, we hypothesize

a potential connection between HHV-6 and depression, which will be explored in future

research to assess the extent to which HHV-6 may contribute to the development of

depressive symptoms.

2.5.2 Topological Analysis

The topological network approach facilitates the comparison of cognitive patterns across

subjects. Phase coherence analysis reveals that individuals in the depressive group gen-

erally exhibit reduced low-frequency WM activation, particularly in the delta and theta

frequency bands. This trend becomes more pronounced as depressive symptoms progress

from moderate to severe. As illustrated in Figure 2.4 C and D, highly depressed patients

exhibit a significant disparity in beta WM activation compared to those in the mildly

depressed group. This suggests that the depressive group demonstrates stronger beta

activations than healthy controls, with highly depressive patients being particularly sus-

ceptible to this imbalance. Mildly depressed patients exhibit deficiencies in delta and

theta WM deactivation, while the highly depressive group displays redundant delta and

theta WM deactivation. During WM tasks, depressive patients show reduced frontal-

midline theta power and increased occipital upper alpha power during WM encoding [89],

aligning with previous research suggesting abnormal brain activity across all frequency
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bands in depression.

The topological structure of beta frequencies (Cluster D in Figure 2.5) among highly

depressive patients reveals additional central-parietal WM activation compared to the

mildly depressed group (Cluster A in Figure 2.5). This finding is consistent with studies

indicating that MDD is characterized by unique EEG oscillations in the beta frequency

range, which dominate over delta, theta, and alpha frequencies when compared to healthy

controls [90], [91]. High beta coherence has been associated with connectivity within and

between regions such as the Dorsolateral Prefrontal Cortex (DLPFC) and temporal regions

[79].

Increased delta deactivation during WM tasks may reflect low WM load and could be

associated with a resting recovery mechanism following cognitive effort. The comparison

of Cluster B and Cluster C (Figure 2.5, panel C) along with the increase in delta activity

(Figure 2.3) suggests that delta deactivation increases as depressive symptoms intensify, in

line with findings from neuromodulation therapy studies [92]. Mildly depressive patients

exhibit a lack of delta and theta WM deactivation, whereas highly depressive patients

show excessive delta and thetaWM deactivation. Additionally, studies have found that

increases in beta and gamma power in the Left-Dorsolateral Prefrontal Cortex (L-DLPFC)

correlate with improvements in depressive symptoms [92]. Enhanced attentional processes

associated with beta and gamma oscillations [93] may help explain how beta oscillations

modulate attentional processing in depressive subjects. This is further supported by the

comparison between Figure 2.3D (decreased alpha activation) and Figure 2.3E, suggesting

that greater reductions in upper alpha and gamma power during WM maintenance are

indicative of higher depressive severity [89].

2.5.3 Contribution of Frequency and Topological Selection for

Classifying and Scoring Depressive Patients

The use of a ResNet classifier to differentiate depressive patients from healthy controls

demonstrated that focusing solely on the beta frequency band yields higher classification

accuracy than using the entire frequency range. In assessing depressive severity, the

system introduced an effective method for quantifying the severity of depression. This

suggests that the beta frequency band holds promise for identifying depression during

WM tasks [6]. However, although beta frequency activity can serve as a diagnostic tool

for depression, it does not significantly enhance the accuracy of scoring depressive severity.

It is important to note that scoring results within the beta band showed a wide vari-

ance. To improve the robustness of depressive severity assessments, it is recommended to

consider the inclusion of all frequency bands. The relatively lower average accuracy may
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be attributed to the small number of psychologists involved in diagnosing patients—only

two in this case—which introduces instability in the data, particularly when testing deep

learning models with potentially misdiagnosed subjects.

2.5.4 State of the Art for Classifying Depressive Patients

Table 2.6 demonstrates the advantages of our proposed method, achieving the highest

accuracy of 87.1% for detecting depression. However, when assessing the overall perfor-

mance in scoring depressive severity (Table 2.5), the results are weaker compared to those

in Table 2.4, which utilizes the entire frequency bands. This discrepancy may be due

to the influence of data quality and the limited robustness of the proposed model. A

notable limitation of our method is its inability to consistently yield stable results. Fur-

thermore, the approach relies on psychological paradigms, specifically the n-back task,

which primarily captures brain function associated with working memory.

Table 2.6: Comparison with existing methods on classifying depression with EEGs.

References Subjects
Cross

validation
Method +
Feature

Accuracy

EEGs (Scenario)
Hanshu Cai

et al (2020)[76]
MDD = 86,
HC = 92

10-fold
KNN + EEGs
(Fp1, Fpz, Fp2)

Highest at
86.98%

Xiaowei Zhang
et al (2020)[94]

MDD = 81,
HC = 89

10-fold
CNN + EEGs +
demographic

Average at
75.29%

Xiaowei Li
et al (2019)[95]

MDD = 24,
HC = 24

24-fold
CNN + EEGs
(all frequencies)

80.74% for
mild

The proposed
method

MDD = 48,
HC = 52

10-fold
ResNet + EEGs

(beta bands
16 electrodes)

Max: 87.1%
and Average
at 45.7%

2.5.5 State of the art for scoring depressive severities

Scoring of depressive severity is addressed in two studies based on Magnetic Resonance

Imaging (MRI)-related images with Partial Least Squares Regression (PLSR) and Rele-

vance Vector Regression (RVR) [96]. Table 2.7 shows that under the leave-one-out cross-

validation, the minimum RMSE can reach 2.50 [97], which means the RVR+MRI method

can precisely grade the depressive severity within 2.50 error. In this study, the proposed

method shows a minimum RMSE of 2.80 under 10-fold cross-validation.

2.6 Conclusion and future work

In this study, we developed a system consisting of two models based on the ResNet ar-

chitecture. The first model is designed for depression detection, while the second model

assesses the severity of depressive symptoms. Both models utilize 16 carefully selected
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Table 2.7: Comparison with existing methods on scoring depressive severities with EEGs.

References Subjects
Cross

validation
Method +
Feature

RMSE

Images (Scenario)
Kosuke Yoshida
et al (2017)[83]

MDD = 58,
HC = 65

leave-one-out PLS + sMRI 9.56

Benson
et al (2012)[97]

MDD = 30,
HC = 0

leave-one-out RVR + MRI 2.50

EEGs (Scenario)

The proposed
method

MDD = 48,
HC = 52

10-fold
ResNet + EEGs
(beta bands
16 electrodes)

2.80

EEG channels and focus on beta frequency signals. The ResNet classifier is used to dis-

tinguish depressive subjects from healthy controls, while the ResNet regression model

quantifies the severity of depression. Coherence analysis was employed to identify key

frequency bands and functional brain networks associated with depression, with a partic-

ular emphasis on the role of beta frequency in both detecting depression and scoring its

severity. The selected EEG channels demonstrated significant advantages in classifying

depression. Although the model developed in this chapter shows promising results for

depression classification and severity assessment, it is crucial to validate its performance

using external datasets. This would help assess its generalizability and highlight the im-

portance of testing the proposed model in diverse contexts. Future research will focus

on: 1. Advancing the construction and optimization of ANNs. 2. Refining EEG data

acquisition methods and selecting more representative participants with depression. 3.

Designing more robust experiments to validate the model’s efficacy. 4. Investigating the

impact of antidepressant treatments on EEG signals. Additionally, we plan to explore

potential connections between the inducing factors of depression and HHV-6, which could

provide insights into underlying mechanisms of the disorder.
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Figure 2.4: The t values (significant level) of the comparison between the depression group
and the healthy control group.
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Figure 2.5: Clustering of significantly increased and decreased phase synchronization
indices primarily in the beta bands for both depressive groups and the control group.
The upper panels (A and B) show the significant PSI decrease and increase during the
2-back task, compared to the 0-back condition (p < 0.05) between the depressive group
with low scores and the control group. The lower panels (C and D) show the significant
PSI decrease and increase between the depressive group with high scores and the control
group. Clusters A, B, C, and D represent significant groupings identified with a family-
wise error rate correction at α = 0.01. The panels labeled Bc, Cc, Cd, and Dc show
correlation coefficients for phase synchronization within the corresponding clusters. The
gray panel (C) indicates that the significance level is slightly weaker.



Chapter 3

Noninvasive Visualization of Brain

Networks

WM is a critical cognitive function responsible for the temporary maintenance and ma-

nipulation of information, serving as a key indicator of brain function. The processes

involved in memory retention, inhibition, and disinhibition are central to understanding

the brain’s neurocognitive architecture. Although several theoretical models have been

proposed to elucidate the complex WM process, comprehensive evidence detailing the

specific brain regions and structures involved in maintenance, inhibition, and disinhibi-

tion remains limited. In our study, we applied phase-lock coherence and general partial

directed coherence to investigate interactions among four adaptively fitted EEG sources.

Additionally, we leveraged previously established models to map brain circuits associated

with memory maintenance, inhibition, and disinhibition. The experiment, conducted with

forty-five mental health undergraduates using a classical visual n-back paradigm, revealed

key insights into the role of the brain in WM. Notably, the bilateral PFC was found to be

primarily involved in cognitive functions such as rehearsal before recognition for object

classification, inhibition to maintain positive memory, and disinhibition to stimulate sub-

sequent brain interactions. Our findings also indicated that the right PFC occasionally

assisted the left PFC in managing high-capacity WM tasks. In contrast, posterior regions,

specifically the Posterior Parietal Cortex (PPC), were engaged in attention arousal and

memory maintenance. These findings led us to the following conclusions: 1. The recurrent

maintenance circuit is crucial for executing positive cognitive components associated with

WM 2. Inhibition functions temporarily pause sustained cognitive activities, effectively

conserving energy. 3. Disinhibition facilitates the next phase of cognitive processing,

enabling the selection of new objects or focusing on novel stimuli.

29
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3.1 Introduction

WM is defined as the cognitive ability to maintain and manipulate information over short

periods of time [98]. It is closely linked to attentional control [99] and academic perfor-

mance [100]. While there is no universal agreement on the neurocognitive architecture

of WM, its core function involves the short-term maintenance and manipulation of infor-

mation [101]. A variety of traditional WM paradigms, typically characterized by lower

capacity, have been employed to assess the cognitive performance of individuals with men-

tal impairments, including those diagnosed with schizophrenia, stroke, traumatic brain

injury, and Attention Deficit-Hyperactivity Disorder (ADHD). However, there remains a

critical, unmet need for non-invasive methods to assess WM activity and guide psycho-

logical interventions.

This study takes a multifaceted approach to examining WM. First, (i) we assess be-

havioral performance using n-back paradigms. Second, (ii) we analyze brain networks

associated with WM using phase-lock coherence and directional coherence following the

adaptation of a 64-channel EEG, with four sources generated to simulate cerebral inter-

nal communication. Lastly, (iii) we propose a ”neurocognitive architecture” of working

memory based on region-to-region connectivity, identifying pathways for memory main-

tenance and lateral inhibition during WM tasks. This study provides insights into the

processes of WM and the corresponding brain regions through coherence analysis, offer-

ing a non-invasive assessment of functional networks during WM tasks in the healthy

population.

The proposed neurocognitive architecture of WM [101] includes the following five key

components: 1. Selective attention 2. Object information recognition and maintenance

3. Rehearsal process 4. Updating and attention sustenance 5. Inhibition [101], [102].

This framework integrates various processing descriptions and emphasizes the con-

cepts of memory maintenance and lateral inhibition [101]. Regions such as the visual cor-

tex, PFC—specifically the posterior superior frontal gyrus and middle frontal gyrus—the

PPC, and the inferior temporal cortex, are integral to visual WM tasks [98], [103], [104].

This chapter outlines the processes involved in WM and the corresponding brain regions

through coherence analysis, offering a non-invasive assessment of brain networks during

WM tasks in healthy individuals. Based on different neurocognitive stages, three major

processes during WM tasks are explored in this study:

1. Behavioral performance assessment through n-back paradigms. 2. Brain network

analysis using phase-lock coherence and directional coherence, based on adaptively fitted

64-channel EEG. 3. The proposal of a ”neurocognitive architecture” of WM based on

region-to-region connections, identifying pathways for memory maintenance and lateral

inhibition.
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3.2 Related Work

3.2.1 Pathway for Attention Arousal and Executive Function

The PFC is widely recognized for its pivotal role in the maintenance of information dur-

ing WM tasks. Meta-analyses consistently demonstrate that the left PFC, particularly

the ventral aspect, is associated with verbal WM tasks, while the right PFC, especially

the dorsal aspect, is activated during spatial WM tasks [105]–[108]. Lesion studies fur-

ther corroborate these findings, showing that electrophysiological activity in the PFC of

monkeys reflects these functional distinctions [109], [110]. FNIRS has also been used to

assess WM load by monitoring hemodynamic activity in the PFC [111], reinforcing the

importance of the PFC in WM. In addition to the PFC, the PPC is strongly implicated

in WM processes [112], with spatial WM tasks engaging bilateral parietal regions [105],

[107]. fMRI and Positron Emission Tomography (PET) studies have demonstrated that

the PFC plays a key role in selecting content from posterior regions [108]. Some studies

have suggested that the superior parietal cortex is also involved in executive function and

selective attention control [113], [114]. Moreover, research into the integrity of white mat-

ter pathways has revealed connections between the PFC, parietal cortex, and temporal

cortex during WM tasks [104], [115].

3.2.2 Pathway for Coding and Decoding

Effective WM requires the encoding and subsequent selection of relevant information

amidst distractors [116]. The dynamic interaction between the PFC and PPC has been

shown to generate top-down signals that modulate stimulus-coding networks [117], [118].

The PFC’s adaptive coding is crucial for task-specific learning, as demonstrated by its abil-

ity to classify learning tasks [119], [120]. Notably, population coding within PFC neurons

has been implicated in transitions between different representational states, particularly

during delayed paired associates tasks [121].

Source analyses have revealed that initial visual encoding occurs in posterior brain re-

gions, while selection rules are encoded in the PFC. These encoding and decoding mech-

anisms are essential for maintaining memory content [122]. Multivariate decoding and

source analyses further show that prefrontal and parieto-occipital persistent oscillatory

neural activity are vital for selecting and maintaining memory content [122].

3.2.3 Pathway for Sustained Brain Activity

Maintenance and sustenance in the brain may involve processes such as memory storage,

task and goal maintenance, and attention sustenance. Stronger synaptic connectivity is
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thought to be associated with brain networks involved in sustained higher activity [101].

Specifically, fronto-parietal activity has been linked to task-general processing, such as

maintaining goals and task sets [123].

3.2.4 Pathway for Lateral Inhibition

In WM tasks, inhibition becomes critical when the system approaches its capacity. Inhi-

bition prevents the decay of persistent activity [98]. A dynamic ”winner-take-all” model

has been proposed to explain lateral inhibition among memory representations, ensuring

that only the most relevant memory remains active [101]. Cognitive inhibition (the abil-

ity to suppress irrelevant information) and response inhibition (the ability to suppress

automatic responses) are crucial for integrating new and old information in WM tasks

[124]. While several regions, including the superior parietal cortex and frontal areas, are

involved in inhibition during WM tasks [117], [118], [125], few studies have explored the

architecture of inhibition across these regions. To validate the ”human neurocognitive

architecture” of WM, we use EEG sources and their connections to construct a communi-

cation model based on these cognitive components. Dynamic and statistical algorithms,

such as neural information flow directionality [126]–[128] and PLC [6], [129], have been

applied to measure the transmission of neural signals. Techniques like Partial Directed

Coherence (PDC) [130] and GPDC [131] have proven effective in analyzing brain net-

works based on EEG studies, with applications in various clinical populations, including

patients with Parkinson’s disease [128], Alzheimer’s disease [132], depression [5], [6], and

hippocampal-prefrontal activation in monkeys [133].

3.3 Methods

3.3.1 Participants

Forty-five healthy undergraduate students (6:4 male to female, mean age = 20.4 years)

participated in the visual n-back paradigm tasks. The study was approved by the insti-

tutional ethics review board, and informed consent was obtained from each participant.

Participants had no history of psychiatric or neurological disorders and were not on any

medication prior to the study.

3.3.2 Experimental Procedures

The n-back task was implemented using E-Prime 5.0. The letter-based variant of the

n-back task was employed, with the 0-back serving as a baseline and the 2-back as the
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Figure 3.1: Experimental procedure and timeline. Participants responded to stimuli by
pressing the ’1’ key with the index finger for target stimuli (match) and the ’2’ key with
the middle finger for nontarget stimuli (mismatch).

working memory load. In the 0-back task, participants were asked to identify a pre-

specified target letter (’X’), while in the 2-back task, they were asked to identify a letter

matching the one presented two trials earlier. Stimuli (letters) were randomly selected

from the English consonants, as shown in Figure 3.1.

The experiment consisted of three blocks, each containing two 0-back and two 2-

back tasks, with the task order randomized. Each task lasted 75 seconds and included

a pseudorandom sequence of 30 consonants (10 targets and 20 nontargets). Letters were

presented for 0.5 seconds, followed by a 2-second inter-stimulus interval. A 45-second

break was given between each block. Participants were instructed to respond as quickly

and accurately as possible. Reaction time and accuracy were recorded, with incorrect

responses excluded from EEG analysis. Prior to the experiment, participants completed

practice trials to familiarize themselves with the task.

3.3.3 EEG Recording

EEG data were recorded using a BrainAmp amplifier (Brain Products, Munich, Germany)

and Braincap electrode cap (EASYCAP, Herrsching, Germany) according to the inter-

national 10–20 system. The EEG was referenced to the FCz electrode, with the AFz

electrode serving as the ground. Vertical and horizontal Electrooculogram (EOG) were

recorded from two additional channels placed at the right and left of the eyes. Electrode

impedance was kept below 5kΩ. EEG signals were sampled at 1000 Hz with no filtering

applied during recording.
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3.3.4 Data Analysis

EEG data were preprocessed using a band-pass filter (0.16–30 Hz, 24 dB/octave), fol-

lowed by artifact rejection and baseline correction. The EEG analysis was divided into

preprocessing, source modeling, PLC, and GPDC. For preprocessing, incorrect trials were

removed, leaving an average of 53 trials for 0-back and 49 trials for 2-back tasks per

subject. These trials were used for subsequent source modeling and coherence analysis.

PLC analysis was used to assess the stability of phase synchrony between sources, while

GPDC was used to examine directed connectivity between brain regions.

Figure 3.2: Scalp voltage maps for the 2-back condition minus the 0-back condition, showing
distinct activation patterns in the front and back hemispheres during different time periods.
The circled electrode sites correspond to Fz and Oz. The Global Field Power, which represents
the sum of squared amplitudes across all channels, is shown in a logarithmic scale.

Data Preprocessing and Single-Trial Source Waveform Extraction

For each subject, Evoked Related Potential (ERP) waveforms were averaged for the 0-

back and 2-back conditions. The difference between these conditions was computed for

each subject, and the collective representation of EEG was generated by averaging across

subjects. The scalp topography of these difference waves is shown in Figure 3.2.

Source localization was performed using Brain Electrical Source Analysis (BESA 6.0)

software. A realistic head model was used to estimate the source configuration, based
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Figure 3.3: RSs and their corresponding time courses of group average EEGs. The left panel
shows the three directional time courses of the RSs, and the right panel shows the locations and
orientations of the four RSs, with orientation 1 representing the primary orientation of each RS.

on findings from fMRI studies indicating activations in the bilateral superior/inferior

parietal lobules and bilateral inferior frontal gyri during the 2-back vs. 0-back contrast

[134]. A Regional Source (RS) model, composed of four sources, was used to estimate the

underlying brain activity. The primary orientation of each RS was set to match the dipole

moment of the averaged ERP difference waves (Figure 3.3). The resulting RS model was

then applied to the EEG data to extract single-trial source waveforms, which were used

for subsequent coherence analysis.

PLC Analysis

PLC was calculated using Morlet’s wavelet transform in the time-frequency domain:

ωtrial,i(f, t) =

(
1√
πδt

exp
(
−t2/2δ2t

)
exp(j2πft)

)
, (3.1)

and Phase Lock Value (PLV) was used to quantify the phase synchrony between
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different RSs:

PLVl,m(f, t) =

∣∣∣∣∣ 1n
n∑

trial=1

exp (i [ωtrial,l(f, t)− ωtrial,m(f, t)])

∣∣∣∣∣ , (3.2)

where n is the number of trials. The PLV was calculated for each frequency from

1 Hz to 30 Hz. A two-sample t-test was used to assess the differences in PLV between

0-back and 2-back tasks across time and frequency domains. Additionally, 1000 bootstrap

resampling was performed to assess statistical significance.

GPDC Analysis

As consistent phase lags much smaller than a full oscillatory cycle are suggestive of di-

rectional influences, they are in principle ambiguous because of the cyclic nature of the

signals. We measured the GPDC [131] value among these four generated sources to mea-

sure the directed connections. It can measure causality by predicting one signal from past

values of another signal in terms of the degree (GPDC value). This method based on a

type of P-order Multivariate Autoregressive (MVAR) model:

X(t) =
P∑

p=1

Ap(n)X(t− p) + e(t), (3.3)

where Ap is the autoregressive coefficient matrix with the size of 4×4 and p is time lag,

P is the maximum number of lags (model order), X(t) is the concatenated matrix of four

source signals at time t, and e(t) is the residual error vector. The MVAR model order P

can be calculated by evaluating and whereM is the number of time series, P is the optimal

model order, N is the time point and σ is the covariance matrix. The MVAR coefficients

can be obtained by two different ways [126]: 1) the mean coefficients of all single-trial

MVAR coefficients, and 2) the MVAR coefficients of the data concatenated from all single-

trial source waveforms. We selected the second way to calculate the MVAR coefficients,

and set each sliding time window as 2000 ms with 50 ms step between successive windows

during different trails and tasks conditions. According to our previous study [126], we

employed Kalman smoother method [135] to figure out the optimal estimator for MVAR

coefficients, which only can rely on previous measurements and inevitable time lag.

The fitted MVAR parameters were then transformed from the time domain into the

frequency domain:

Λl,m(f, t) = I −
P∑

p=1

Ap(t)e
−j2πfp/Fs , (3.4)

where I is the p× p identity matrix, with the sampling rate Fs in terms of (l→ m)th
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entry, and Λl,m(f, t) were evaluated from 1 ∼ 30Hz at every 1 Hz step. The value of

GPDC then indicating the directional connections among these four sources is calculated

as:

GPDCl→m(f, t) =
|Λl,m(f, t)|√∑M
m=1 |Λl,m(f, t)|2

, l = 1, . . . ,M, m = 1, . . . ,M, (3.5)

where Λl,m(f, t) is the variance of the prediction error for order P . After the calculation

of GPDC, the two sample t-test was used again to identify the significant time-frequency

domain between baseline (0-back) and 2-back. Although 1000 times of bootstrap re-

sample method was employed again and scattered significant areas were drawn with gray

band (95% confidence interval level), we still sorted out the significant area through

5×5 median filter, and pick out some obvious time-frequency domains. The bootstrap

method can detect the time-frequency regions, where the GPDC values in 2-back tasks are

significantly different compared to those values in 0-back tasks. To address the problem

of multiple comparisons, the significance level ( p value) was corrected using a False

Discovery Rate (FDR) procedure.

3.4 Study Results

3.4.1 Behavioral Results

We recorded participants’ behavioral performance during the implementation of the tasks.

As shown in Table I, both response accuracy (p < 0.001) and reaction times (p < 0.001)

significantly differed between the experimental groups.

3.4.2 Scalp Topography Performance

After averaging the waveforms across subjects, we conducted a contrast between the 2-

back and 0-back (baseline) conditions. Four distinct peaks are evident in Figure 3.2.

The initial peaks appear at 158 ms and 324 ms, marking a shift in scalp topographic

activity from the left temporo-occipital lobe to the centroparietal lobe. Notably, prefrontal

hyperactivity is observed between 844 ms and 1328 ms, indicating a reorganization of

activated regions towards major frontal areas. Further analysis reveals a reduction in

frontal potential from 848 ms to 1328 ms, concurrent with activation of the prefrontal,

frontal, and temporal lobes.
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3.4.3 Band-Specific Synchrony Analysis

We conducted a detailed examination of phase-locking synchrony among the four sources

illustrated in Figure 3.4. Prior to 700 ms, as shown in Figure 3.4a and 3.4b, the connection

between S2 and S3 exhibited highly synchronized coherence, with the left PPC lagging

behind the right PFC (mean relative phase = −17.20◦, p < 0.001, r = 0.943, bootstrap

test versus zero phase lag; Figure 3.4a, middle panel). This synchronization was most

prominent in the late theta and early alpha bands (6 ∼ 11 Hz). Additionally, strong

phase coherence was observed for the posterior connection (mean relative phase = −4.21◦,
p < 0.001, r = 0.875, bootstrap test versus zero phase lag; Figure 3.4a, right panel) in

the late beta band (28 ∼ 29 Hz). In the post-700 ms phase-locked activities, as shown in

Figure 3.4c and 3.4d, notable connections include the front connection between S1 and

S2 (mean relative phase = −17.91◦, p < 0.001, r = 0.833, bootstrap test versus zero

phase lag; Figure 3.4c, upper right panel) during the late alpha and early beta bands

(11 ∼ 16 Hz), the left lateral connection between S1 and S3 (mean relative phase =

11.08◦, p < 0.001, r = 0.946, bootstrap test versus zero phase lag; Figure 3.4c, lower left

panel) in the middle beta band (17 ∼ 22 Hz), and the right lateral connection between S2

and S4 (mean relative phase = 14.89◦, p < 0.001, r = 0.790, bootstrap test versus zero

phase lag; Figure 3.4c, lower right panel) in the early and middle beta bands (14 ∼ 19

Hz, and 21 ∼ 26 Hz).

3.4.4 Band-Specific Directionality Analysis

Directed coherence, reflecting the direction of potential causal influence, was observed

across all frequency bands from theta to beta. Figure 3.5a presents time-frequency re-

gions exhibiting significantly increased GPDC. These significant time-frequency domains

are shown in Figure 3.5a, with directed connections for different neurocognitive processes

depicted in Figure 3.5b. Comparisons between 2-back and 0-back tasks revealed signif-

icant connections at several latency intervals. Notably, connection E (150–300 ms) and

connection D (550–700 ms) were detected prior to the response phase, while connections

A and F (700–900 ms), C (900–1100 ms), and H, B, and G (1300–1600 ms) were observed

post-response. No significant differences were found between 0-back and 2-back tasks

after 1600 ms, and due to the 2000 ms duration of the final procedure, this period was

excluded from the analysis.
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3.4.5 Neurocognitive Architecture and Component Processes of

Working Memory

Building on recent research utilizing fMRI and electrophysiological methods [98], [101],

Figure 3.6 illustrates the involvement of key cognitive components. Selective attention is

observed during the P300 phase [5], [136], verbal rehearsal processes are evident [137], sus-

tained activity is observed [138], and retrieval/readout processes are engaged [101], [139].

Additionally, pattern recognition [138], memory update and storage [140], and lateral in-

hibition [98], [101] contribute to the cognitive landscape. Preceding responses, posterior

connections are crucial for selective attention. Bilateral prefrontal regions engage in ver-

bal rehearsal and retrieval processes, while sustained attention and pattern recognition

occur between the right prefrontal and left parietal regions during the 500–700 ms interval,

following an initial silent period of approximately 250 ms. After the response, sustained

attention and lateral inhibition unfold in the anteroposterior right hemisphere. Memory

updating and encoding processes occur in bilateral prefrontal regions during the 700–900

ms interval. Between 900 and 1100 ms, cognitive and memory components are repeated

to maintain brain activity during visual WM tasks. From 1100 to 1600 ms, sustained

attention monitors targeted objects, and lateral inhibition mitigates the risk of failure.

Lastly, we propose a novel neurocognitive architecture for WM processing in Figure 3.7,

addressing current gaps in the understanding of WM.

3.5 Discussion

In the present study, we employed the traditional visual n-back paradigm and two coher-

ence methods to construct brain network models during WM tasks. These methods adap-

tively identified four brain sources, predominantly located in the bilateral PFC and PPC,

both of which are regions linked to core WM functions. Specifically, when comparing the

2-back and 0-back conditions, PLV revealed undirected brain network connections, while

GPDC provided insight into directional interactions. Notably, both coherence methods

yielded similar network structures, supporting the reliability of the connectivity patterns

observed. Based on these findings, we propose a comprehensive model of WM that in-

tegrates unique directional cognitive and executive connections, alongside two distinct

cycles for cognitive processing and memory maintenance.

Before task responses, the initial targeted stimulus triggered selective attention in the

parietal regions and was subsequently encoded in visual cortex areas. The beta-band

posterior connections shown in Figure 3.4a, along with the broad beta-band directional

causality observed in Figure 3.5b-I, suggested that attention was aroused upon visual
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fixation of the target. Contrary to our initial expectations, beta oscillations, particularly

in relation to selective attentional control, appear to play a pivotal role in governing both

attention and top-down processing [141]. In line with Eriksson’s framework of a core

fronto-parietal circuit sustaining attention and supporting rehearsal [101], our findings

combine the primary alpha coherence in Figure 3.4a with the beta directional connections

in Figure 3.5b (D), suggesting that rehearsal processes are simulated between the right

PFC and left PPC. Despite using different frequency bands for coherence and causality

analysis, these results point to the brain’s capacity to simulate early-stage reasoning

processes in a top-down fashion, linking attention with memory encoding and rehearsal

networks.

3.5.1 The Maintenance Loop During WM

Frontal brain regions, especially during delay periods, have been shown to play a pivotal

role in supporting sustained brain activity [142]. Previous studies suggest that sustained

frontal activation during WM tasks is linked to selective processes rather than the actual

encoding of memory content [143]. Meta-analyses further indicate that the left PFC, par-

ticularly its ventral region, is more engaged in non-spatial WM tasks, while the right PFC

is implicated in spatial WM [105]. Our n-back task findings, particularly the directional

connection D in Figure 3.5b-I, suggest a flow of information from the right PFC to the left

PPC, implying that the right PFC serves as a buffer to store information for subsequent

retrieval and comparison during WM tasks.

For WM to function effectively, short-term memory maintenance is essential for sup-

porting sustained brain activity throughout the task. The interval from 300 ms to 550

ms, marked by a relative absence of significant brain activity, suggests a stable state of

activation during WM performance. This “silent period” might resemble the P300 com-

ponent, which is typically associated with preparatory or anticipatory processes in WM

[144]. Although we did not specifically investigate the mechanisms underlying this silent

period, we hypothesize that it serves as a preparatory phase that primes higher-level

WM processes. Following this period, sustained top-down influences may transform the

representations stored in WM to guide decision-making [122].

The red loop in Figure 3.7 highlights the memory maintenance cycle following re-

sponses, suggesting that the bilateral PFC plays a critical role in reinforcing memory

information or sustaining relevant brain activity. Previous fMRI studies have shown that

older adults exhibit reduced Blood-Oxygen-Level-Dependent (BOLD) signal increases in

the DLPFC during memory maintenance, underscoring the importance of both manip-

ulation and sustained attention for effective WM performance [145]. The yellow loop

represents the repetitive processes that enhance short-term memory, supporting the com-
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parison, correction, and updating of memory representations.

3.5.2 The Inhibition Loop During WM

Recent theories propose that WM relies not only on recurrent excitatory interactions

among pyramidal neurons to sustain activity during delays, but also on lateral inhibi-

tion to modulate interneuron activity and filter out distractions [146]–[148]. This lateral

inhibition mechanism ensures that unnecessary or distracting information is suppressed,

enabling efficient cognitive processing during WM tasks. In the context of filtering dis-

tractors, lateral inhibition becomes hyperpolarized when background noise threatens neu-

ronal firing [149]. Lateral inhibition is particularly critical for filtering irrelevant inputs

and maintaining focus on the task at hand, as shown by the observed effects of inhibition

in the red and yellow loops of Figure 3.7, which align with theories positing that atten-

tion and WM are constrained by flexible cortical connections that balance inhibitory and

excitatory influences [150].

Instances of forgetting in WM may arise from insufficient lateral inhibition, leading to

a reduction in neural firing and, consequently, a failure to maintain memory representa-

tions. Our findings provide preliminary evidence of prefrontal lateral inhibition in WM,

especially following the delay period, to preserve memory content and prevent distraction.

However, we also speculate that inadequate inhibition may lead to cognitive “stagnation,”

where the brain fails to process or update information effectively. Disinhibition, on the

other hand, plays a critical role in initiating subsequent brain activity, particularly as

the delay period extends. This process may explain how disinhibition acts as a switch

to activate subsequent cognitive processes and reactivate inhibitory networks, facilitating

the continuation of WM tasks [149].

3.5.3 Conclusion and Future Directions

In this study, we have utilized phase-locking and directional coherence analyses to explore

the brain network dynamics underlying WM. Our findings suggest that the bilateral PFC

and PPC are key regions involved in attention, rehearsal, memory maintenance, and

inhibition. We propose a network model that integrates these processes, highlighting the

essential role of disinhibition in facilitating the transition between different stages of WM.

Key conclusions include: (i) the bilateral PFC and PPC are crucial for maintaining WM

tasks; (ii) the right PFC supports the left PFC in high-capacity WM performance; and (iii)

disinhibition serves as a necessary mechanism to unlock subsequent cognitive processes

after inhibition. Future work will focus on identifying abnormal network connections

in WM among individuals with depression and exploring how these abnormalities affect
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cognitive functioning.
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Figure 3.4: Phase-locked connections among four sources from 0 ms to 700 ms (a, b) and
from 700 ms to 1600 ms (c, d). (a) Left panel shows connections at specific frequencies, with
the right panel displaying circular statistical angles and their distribution. Circular histograms
also illustrate the mean angles of phase differences between pairs of sources (red line). (b, d)
t-statistics for the differences in PLV between 2-back and 0-back tasks across subjects. For
example, in the pair of S1 and S3, the PLV in the 18-21 Hz beta band was higher during the
2-back task, peaking at 20 Hz. The green band represents the t-values for a one-sample t-test
with a 95% confidence interval using a bootstrap method, and the red line represents the t-value.
(c) Connections at specific frequencies with their circular statistical angles and distribution.
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Figure 3.5: Directed connections based on the time-varying GPDC. (a) Time-frequency rep-
resentations of the time-varying GPDC under the 2-back task, with significant grey blocks
indicating differences between the 0-back and 2-back tasks using a two-sample t-test. The bar
represents the GPDC value. (b) Directed connections at different latencies, indicated by color-
coded arrows representing the direction and strength of information flow. Early latency intervals
(I: 150–300 ms, E; II: 550–700 ms, D) primarily involve S3→S4 (E) and S2→S3 (D), both reflect-
ing trigger information transmission. Late latency intervals (III: 700–900 ms, A; IV: 900–1100
ms, C; V: 1300–1600 ms, B, G, H) show diverse connections between sources reflecting memory
encoding, updating, and sustained attention processes.
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Figure 3.6: Schematic explanation of representations to brain networks during WM tasks.
Left upper panel is the location illustration of four fitted sources. A∼E present components
relative to WM in terms of some specific neurocognitive processes. A. During this duration,
selective attention is activated by the trigger of capitals shown on the screen, and this induced
the attention mechanism in PPC cortex. B. Executive and cognitive functions between right
PFC cortex and left PPC region, appear after selective attention being implemented to process
numerical and verbal information. C. The PFC and right hemisphere connections indicate the
update of information flow for memory storing, and lateral inhibition to avoid the failure of
memory representation. D. Persistence of information under WM tasks happens in PFC cortex.
E. The last process for the recall of sustained attention, lateral inhibition to avoid the failure of
attention and memory processing, as well as disinhibition.
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Figure 3.7: Summary of the proposed neurocognitive architecture for WM. X represents
the visual n-back task trigger. Before responses, attention arousal (0-1-2) is linked with
the activity maintenance loop (2-3-2). After the response, the brain enters a memory
maintenance loop, consisting of an activity loop (2-3-5-2) and a major memory loop (3-
5-3), alongside inhibition or disinhibition loops (2-3-4-2, 2-3-5-4-2). The central role of
inhibition is crucial for maintaining accuracy in information processing, while disinhibition
resets brain activity, enabling subsequent cognitive processes.



Chapter 4

Inhibition Adaption On Pre-trained

LMs

Fine-tuning pre-trained LMs may not always be the most efficient approach for down-

stream tasks. While traditional fine-tuning methods have shown promising results, there

remains a need for a clearer understanding of their mechanisms and more effective meth-

ods for inhibiting irrelevant information. To address these challenges, we propose a novel

InA fine-tuning approach that minimizes the number of tunable parameters and selec-

tively reweights the knowledge derived from pre-trained LMs. The InA method involves

two key steps: (1) inserting a small, trainable vector into each Transformer attention

layer, and (2) setting a threshold to discard irrelevant knowledge. This method is in-

spired by the concept of shunting inhibition, where the activation of specific neurons

is inhibited to regulate the flow of information in other neurons. With this inhibition

mechanism, InA achieves competitive, and in some cases superior, performance compared

to other fine-tuning techniques on models such as BERT -large, RoBERTa-large, and

DeBERTa-large for tasks like text classification and question answering.

4.1 Introduction

Fine-tuning, the process of updating the parameters of pre-trained LMs, has been widely

adopted as an effective approach for various downstream NLP tasks. However, classi-

cal fine-tuning methods face challenges due to the redundancy of parameters in fully

pre-trained models, which can lead to inefficiencies when adapting to new tasks. To mit-

igate this, prior studies have attempted to adapt only specific vectors or learn additional

parameters while keeping most of the pre-trained parameters fixed. This approach im-

proves operational efficiency by allowing for the loading of task-specific parameters before

model deployment. LoRA [48] has been a successful strategy, addressing both the model

47
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depth and sequence length limitations by introducing rank decomposition to compress and

reweight pre-trained parameters, achieving a balance between efficiency and performance

[47], [49], [50].

However, fine-tuning pre-trained LMs for NLU tasks still faces key challenges: reduc-

ing the number of tuned weights while effectively approximating the update of pre-trained

weights. Properly selecting relevant knowledge and eliminating task-irrelevant informa-

tion from pre-trained models is critical. This brings us to the question: Why not directly

inhibit ”redundant” knowledge during fine-tuning, while preserving relevant information?

In this study, we address these challenges by proposing a novel method for fine-tuning

called InA. Inspired by the shunting inhibition mechanism in neuroscience, InA offers

a mechanism to suppress irrelevant knowledge during the fine-tuning process. We first

provide an overview of existing adaptation fine-tuning methods and Transformer-based

models, followed by a detailed explanation of activation functions, particularly focusing

on the inhibition mechanism. We evaluate the performance of InA on diverse downstream

tasks such as text classification, question answering, and adversarial text generation using

models like Bidirectional Encoder Representations from Transformers (BERT), Robustly

Optimized BERT (RoBERTa), and Decoding-enhanced BERT with Disentangled Atten-

tion (DeBERTa). In terms of storage, InA uses the same number of tunable parameters

as LoRA, ensuring efficient fine-tuning while offering superior feature compression and

inhibition capabilities.

Drawing on the efficiency of neural networks demonstrated in [151], and the low ”in-

trinsic rank” concept introduced by LoRA [48], we propose InA. The key idea behind

InA is to partially inhibit the intrinsic rank, thereby eliminating the influence of irrele-

vant ”intrinsic parts” of the model. As shown in Figure 4.1, InA is similar to LoRA, as

both methods optimize rank decomposition matrices while keeping pre-trained weights

frozen. However, InA introduces an additional threshold mechanism to control the flow

of information, inhibiting irrelevant parts. This approach allows the model to focus on

task-relevant information while suppressing the influence of extraneous knowledge.

In Figure 1.3, we present a practical example of InA eliminating irrelevant knowledge

from the intrinsic rank during fine-tuning. The intrinsic rank is hypothesized to follow

a Gaussian-like distribution, with a concentrated center and sparse tails. By subtracting

a threshold, InA removes one tail of the distribution, thereby reducing the influence of

task-irrelevant features during fine-tuning. This process helps the model focus on the

most relevant information for the given task.

The contributions of InA are as follows:

• (a) InA effectively inhibits irrelevant information during fine-tuning, improving

model focus on task-related features and eliminating noise from task-irrelevant
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Figure 4.1: Illustration of the transformer architecture and our proposed parameter-
efficient tuning method: Inhibition Adaptation.

knowledge.

• (b) InA benefits from activation functions with relatively flat negative tails, such as

Gaussian Error Linear Unit (GeLU) or Leaky Rectified Linear Unit (LeakyReLU),

which outperform activation functions like Rectified Linear Unit (ReLU). Scaled

Exponential Linear Unit (SELU) and Exponential Linear Unit (ELU), with their

long and upturned tails, perform less effectively with InA.

• (c) InA shares the same trainable parameter count as LoRA, allowing it to inherit

the knowledge compression ability of LoRA while adding the capability to suppress

task-irrelevant knowledge through threshold-based inhibition.

4.2 Problem Statement

Previous work on LoRA [48] primarily focused on comparing fine-tuned models with fully

fine-tuned models using similarity matrices. However, there is no direct visualization of the

specific parts of the model that have been fine-tuned. Additionally, when applying LoRA

to LMs, we found that although the low-rank ”bottleneck” compresses information and

reweights pre-trained parameters, it often introduces noise and task-irrelevant knowledge.

For example, in the input sentence ”I put my red bag in the black bag. What is the color

of my bag?” with the target answer ”red,” traditional fine-tuning and LoRA methods
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I put my red bag in the black bag <SEP>Text:
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Figure 4.2: A practical example of InA and its use in the BERTlarge model, which has
been fine-tuned under question-answering datasets.

struggle to eliminate irrelevant features like pronouns (”I,” ”my”) and nouns (”bag”),

which distract the model from focusing on the actual target knowledge (i.e., ”red”).

When fine-tuning with InA, the threshold mechanism selectively suppresses these task-

irrelevant features. As shown in Figure 4.2, the inhibition vector in InA removes the

influence of extraneous words, such as the pronoun ”I,” allowing the attention layers to

focus on the most relevant terms, like ”red.” This process improves the model’s accuracy

and efficiency in answering the question.

4.3 Explanation of Shunting Inhibition

4.3.1 Shunting Inhibition (Gate with Inhibition)

The design of a gated structure with inhibition in InA is inspired by the shunting inhibition

mechanism [2], [152], [153]. As shown in Figure 4.3, the gate is either ”on” (red box) or

”off” (green box). When the gate is off, signal transmission occurs across the joint,

influenced by shunting synapses. Shunting inhibition plays a crucial role in regulating

neuronal function, acting as a gating mechanism that selects, weakens, or strengthens

features in the model.

In ANNs, shunting inhibition is often described as a gating mechanism, although

its inhibitory function has been overlooked in some studies. Inhibition can be either

subtractive, reducing membrane potential, or divisive, modulating the effect of excitation.

For example, GABA receptors have both fast and slow effects on neuronal firing, which

can modulate the postsynaptic potential.
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4.3.2 Membrane Potentials and Threshold

As illustrated in the right panel of Figure 4.3, the threshold for inhibition is set between

10% and 30%. The membrane potentials typically range from −70mV to +30mV, and

the threshold is set at approximately 15%. Features with activation values below this

threshold are considered irrelevant and are suppressed. This mechanism helps prevent the

model from focusing on unimportant features, which have little significance for specific

tasks.
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Figure 4.3: Inspiration from Neuroscience: Gate with Inhibition.

4.4 Related Work

4.4.1 Transformer-based Language Models

The Transformer ([154]), a sequence-to-sequence architecture heavily reliant on the self-

attention mechanism, has revolutionized the field of NLP and achieved SOTA performance

across various tasks. The exploration of Transformer scaling—by increasing model size,

dataset size, model architecture, context length, and batch size—has been guided by

the scaling law ([155]), significantly improving the capacity of numerous language mod-

els, such as BERT ([156]–[159]), RoBERTa ([160]), A Lite BERT (ALBERT) ([161]),

DeBERTa ([162], [163]), sparse Switch-Transformer-1.6T ([164]), and Swin-Transformer

([165], [166]). Over the years, the performance of these models has improved by orders of

magnitude.

For example, the self-attention operation with bias in single-head attention can be
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described as ([154], [159], [162], [165]):

Q = HWq + bq, K = HWk + bk, V = HWv + bv, (4.1)

A =
QKT

√
d

, (4.2)

Ho = softmax(A+ ba)V, (4.3)

where H ∈ RM×d represents the input hidden vectors, Ho ∈ RM×d is the output of

the self-attention, and Q, K, and V are the query, key, and value matrices, respectively.

Wq, Wk, and Wv ∈ Rd×d are the projection matrices, while A ∈ RM×M is the attention

matrix, and bq, bk, bv, and ba ∈ RM×M represent the bias terms. Here, M is the input

sequence length and d is the dimension of the hidden states.

4.4.2 Fine-tuning on NLP Downstream Tasks

SOTA systems for NLP tasks largely rely on the fine-tuning of pre-trained LMs. In

traditional fine-tuning, the pre-trained model, initially trained on a general domain, is

adapted to a specific downstream task ([156]). To maximize performance, variants of the

vanilla Transformer (e.g., freezing some parameters or learning only a subset of them) have

been developed. This approach requires retraining all parameters of the LM. Fine-tuning

has become the dominant paradigm for various conditional NLP tasks such as question

answering and dialogue generation. In this paper, we focus on fine-tuning for tasks such as

text classification, question answering, and text adversarial generation. We also consider

three widely used pre-trained LMs: BERT, RoBERTa, and DeBERTa. However, the

large size of these models poses a significant challenge for fine-tuning, as they require

substantial computational resources, limiting the accessibility for practitioners.

4.4.3 Parameter-Efficient Fine-Tuning

Adapter Tuning. The adapter tuning approach inserts small, trainable modules (adapters)

between Transformer layers ([46]). Each adapter uses two projection matrices, Wdown ∈
Rd×k and Wup ∈ Rk×d, to project the hidden state into a lower-dimensional space of di-

mension k (the bottleneck dimension). The output of the adapter is then projected back

into the original hidden space. The final output after adapter tuning is given by:

Ho ← Ho + f(HWdown)Wup, (4.4)

where f(·) is a non-linear activation function. One more efficient adapter variant [167]

has been proposed, and it is inserted a Feed-Forward Network (FFN) only after the ”add
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and layer norm” sub-layer.

Prefix and Infix Tuning. Prefix tuning prepends l tunable vectors to the keys and

values of the multi-head attention at each layer ([47]). By concatenating or inserting two

prefix vectors, Pk ∈ RM×p and Pv ∈ RM×p, with the original key and value projection

matrices, the new prefixed or infixed keys and values in the attention mechanism are:

W
(i)
k : prefix = concat(P

(i)
k , CW

(i)
k ), (4.5)

W (i)
v : prefix = concat(P (i)

v , CW (i)
v ), (4.6)

W
(i)
k : infix = insert(CW

(i)
k , I

(i)
k ), (4.7)

W (i)
v : infix = insert(CW (i)

v , I(i)v ), (4.8)

where C ∈ RM×d represents the hidden state to be processed by the attention mecha-

nism, and the prefix (or infix) vectors are split across multiple heads. The notation P
(i)
k ,

P
(i)
v , I

(i)
k , and I

(i)
v refers to the i-th head-specific vectors.

LoRA Tuning. LoRA introduces low-rank matrices into Transformer layers to ap-

proximate the weight updates ([48]). This is achieved by decomposing the weight updates

∆W into a low-rank factorization W0 + ∆W = W0 + WdownWup, where Wdown ∈ Rd×r

and Wup ∈ Rr×d represent the low-rank matrices. LoRA modifies the query and value

projection matrices (Wq, Wv) in the multi-head attention mechanism. The activation

function used is typically LeakyReLU, with a hyperparameter value of 1.0. For a given

hidden input H, the projection output is modified as follows:

Ho ← Ho + s · f(HWdown)Wup, (4.9)

where s ⩾ 1 is a tunable scalar hyperparameter.

Other Methods. Additional parameter-efficient tuning methods include BitFit ([168]),

which fine-tunes only the bias vectors, Diff-Pruning ([169]), which learns sparse parame-

ter updates, Generalized LoRA (GLoRA) ([170]), which generalizes LoRA, and Quantized

LoRA (QLoRA) ([171]), which applies quantization to LoRA using 4 or 8 bits.

4.4.4 Threshold and Inhibition

The threshold mechanism has been mostly used in deep Spike Neural Networks (SNNs)

([151], [172]). A higher threshold will prevent the neuron from firing (’dead-neuron’

problem), and a lower threshold will cause excessive firing. Both affect the ability of the

neuron to differentiate between these two input patterns ([173]). The firing thresholds

are also fixed ([174]) or selected based on some heuristics ([172], [175]). The threshold

was selected as the maximum preactivation of each layer in [172]. [175] selected a certain
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percentile of the preactivation distribution as the threshold. Some recent works employ

leak/threshold optimisation, but their application is limited to simple datasets ([176]).

Most of these articles applied a threshold to SNNs, but they are facing the challenge of

proposing improper methods of selecting the membrane leak and the threshold. To our

best knowledge, there is no example of applying inhibition to a Transformer architecture.

4.5 Inhibition Adaptation

The aim of inhibition adaption is to modify the tunable parameters by using shunting

inhibition mechanism on attention blocks of Transformer. This study mainly investigated

the passing information from the previous layer when using adaption fine-tuning methods.

Passing through the ”bottleneck”, the compressed information still contain task-irrelevant

content. By integrating the shunting inhibition with the adaption fine-tuning methods,

the passing information not only can be compressed, but also they are able to be filtered

by using the scalable threshold. Some special tokens, such as SEP and CLS, are also fine-

tuned accordingly, even through theses special tokens are important to BERT-based LMs.

BERT-based language models considered two directions [156]. Generative Pre-trained

Transformer (GPT)-based models will consider two directions during the pre-training

procedure, but during the fine-tuning and inference, they only consider the direction from

the left to the right [157]. Given a threshold, InA is designed to fine-tune the Transformer

block, and it aims to inhibit the attention block accordingly. Therefore, when fine-tuning

on BERT-based LMs by using InA, InA will consider two directions. In contrast, when

fine-tuning on GPT-based LMs via InA, InA only consider the direction of left-to-right.

4.5.1 Inhibited Adaptation

InA introduces trainable inhibition matrices into Transformer layers to approximate weight

updates. By utilizing a low-rank decomposition W0 + ∆W = W0 + WdownWup, where

Wdown ∈ Rd×r, Wup ∈ Rr×k, and Th ∈ RM×1, InA updates the Query and Key projec-

tion matrices (Wq,Wk) in the multi-head attention sub-layer. For a given input H, InA

modifies the projection output Ho as:

Ho ← Ho + s · f(HWdown − Th)Wup, (4.10)

where s ∈ {0, 1} is a tunable scalar hyperparameter, and Th is the threshold.

Notation. We denote the input hidden vectors as H ∈ RM×d and the output of the

self-attention mechanism as H̄o ∈ RM×d. The projection matrices Wk,Wq,Wv ∈ Rd×d

correspond to the Key, Query, and Value components, respectively.
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Motivation. The motivation behind InA in Transformers is to introduce a flexible

gating mechanism, using an adjustable inhibition vector to fine-tune downstream tasks.

This mechanism automatically learns to filter out irrelevant features, avoiding the need

for explicit sparsity constraints. In the context of transfer learning, pre-trained language

models can provide general features, while the inhibition vector with its gating mechanism

learns to refine and suppress unnecessary information. This makes it possible to adjust

the weights for more effective task-specific fine-tuning. We formulate the linear InA layer

as:

Ik = f(HWk down − Thk)Wk up, (4.11)

Iq = f(HWq down − Thq)Wq up, (4.12)

where Ik ∈ RM×d and Iq ∈ RM×d represent the inhibition matrices on the Key

and Query sides, respectively. Here, f is the activation function, and Thk ∈ RM×1

and Thq ∈ RM×1 are thresholds derived from column-wise max operations on the pre-

activation values:

Thk = max(HWk down)× Inhp, (4.13)

Thq = max(HWq down)× Inhp. (4.14)

4.5.2 Inserting InA into Transformer

The next challenge is to adjust the adaptivity of LMs and identify the most relevant

features from the extensive feature pool generated during pre-training. To achieve this,

we propose subtracting a threshold (Thq) as shown in Equations (4.13) and (4.14). This

subtraction mechanism acts as a filter, allowing the model to discard features with negative

activations. With the introduction of inhibition, as depicted in the right panel of Figure

1.3, irrelevant features (e.g., the extra knowledge about ”I” and ”my” in the red box)

are suppressed. Using the Gaussian Error Linear Unit (GELU) activation function, the

inhibition matrices Ik and Iq cut off the long negative tail of the activation distributions,

thereby retaining the more concentrated, useful features. This selective process enhances

the ability of the attention blocks to focus on dense and relevant features during fine-

tuning.

Next, we incorporate InA into the Transformer attention mechanism. The linear InA

modification of the Transformer is formulated as follows:

V = HWv + bv, K = HWk + bk, Q = HWq + bq, (4.15)

Bk = K + Ik, Bq = Q+ Iq, Ākq =
BqB

T
k√
d

, (4.16)
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Table 4.1: Hyper-parameters for fine-tuning BERT, RoBERTa and DeBERTa with inhib-
ited gate MLPs mechanism on down-streaming tasks.

Hyper-parameter BERT(large) RoBERTa(large) DeBERTa(large)
Dropout of task layer 0.15 0.15 0.15
Warmup Steps 100 100 100
Learning Rates 5e-6 5e-6 5e-6
Batch Size {16,32,64} {16,32,64} {16,32,64}
Weight Decay 0.01 0.01 0.01
Epochs 5 10 10
Learning Rate Decay Linear Linear Linear
Optimizer AdamW AdamW AdamW
Adam ϵ 1e-6 1e-6 1e-6
Adam (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Gradient Clipping 1.0 1.0 1.0
Inhibition Percentile (0.0, 0.1, 0.3, 0.9) (0.0, 0.1, 0.3, 0.9) (0.0, 0.1, 0.3, 0.9)

H̄o = softmax(Ākq + bā)V, (4.17)

where V ∈ RM×d is the Value matrix, Bk and Bq ∈ RM×d are the modified Key

and Query matrices with InA, and Ākq ∈ RM×M is the attention matrix. The term

bā ∈ RM×M represents the relative position bias term for each head in the multi-head

attention mechanism.

Equations (4.15) and (4.16) follow the same structure as the vanilla Transformer at-

tention mechanism. They generate the Key, Query, and Value projection matrices to

represent context attributes. However, the introduction of the inhibition matrices Ik and

Iq in Equations (4.13) and (4.14) enables fine-grained control over the feature selection

process. This allows the model to adjust the context attributes more precisely to fit the

downstream task during fine-tuning. By adding Ik to K and Iq to Q, the model can

retain or enhance important context features, while suppressing those deemed irrelevant

or counterproductive.

4.6 Experiments

4.6.1 Experiment Settings

Our experiments only depend on single-task fine-tuning. Our code is implemented based

on the Huggingface Transformer ([177]). Following prior studies of language models ([48],

[169]), we report results using large models. We use 8 × NVIDIA Tesla A100 with 40GB

graphic memory cards to fine-tune the pre-trained models. Code and models are available

at: https://github.com/ChengKang520/inhibited-lora.

https://github.com/ChengKang520/inhibited-lora
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4.6.2 Evaluation Datasets

This section evaluates the performance of InA in terms of downstream tasks on BERT −
large ([161]), RoBERTa− large ([160]) and DeBERTa− large ([162], [163]). Whether

natural language understanding, question answering or generation, specifically, the bench-

mark General Language Understanding Evaluation (GLUE) ([178]), Stanford Question

Answering Dataset (SQuAD) v1.1 ([179]), SQuAD v2.0 ([179]) and Situations With Ad-

versarial Generations (SWAG) ([180]), we followed the adapter fine-tuning setup ([167])

on RoBERTa − large for a direct and fair comparison. Refer to Table 5.4 for detailed

hyperparameters.

4.6.3 Fine-Tuning Implementation Details

Settings. Following BERT ([156]), RoBERTa ([160]) and DeBERTa ([162]), we adopt

dynamic data batching. We also include span masking ([181]) as an additional masking

strategy with a span size of up to three. For fine-tuning, we use Adam ([182]) as the

optimiser for a fair comparison, and we train each task with a hyperparameter search

procedure—each run takes about 1–2 hours on a DGX-2 node. All the hyperparameters

are presented in Table 5.4. The model selection is based on the performance of the

task-specific sets.

Our experiments are under fine-tuning on downstream tasks. Firstly, we set the in-

hibition percentile as 0% to test whether the result is similar to the settings without

inhibited gate MLPs. Secondly, we set the inhibition percentile as 10% or 90% according

to the performance of the first step. Finally, if the result, when the inhibition percentile

is 10%, becomes better, we will set the inhibition percentile as 30%. If not, we will set

the inhibition percentile as 90%.

4.7 Results

We summarise the efficiency performance of adaption fine-tuning (FT) methods and InA

in Table 4.2. In addition to comparing with different adaption methods, by inserting InA

into BERT − large, RoBERTa− large and DeBERTa− large, we also summarise the

results on eight NLU tasks of GLUE ([178]) in Table 5.1, as well as question answering

– SQuAD v1.1 ([179]), SQuAD v2.0 ([183]) and Text Adversarial Generation: SWAG

([180]) in Table 5.2. In Table 5.3, we compare the performance of InA on the GLUE

development set when fine-tuning BERT − large with five epochs over five different

activation functions. We also summarise the performance of different inhibition levels on

these three large language models in Table 5.5. BERT-based language models consider two
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directions during pretraining and fine-tuning. GPT-based models consider two directions

during the pre-training procedure, but during the fine-tuning and inference, they only

consider the direction from the left to the right.

4.7.1 Efficiency: Trainable Parameters and Speed

Additionally, we would like to discuss the efficiency gains of InA, such as the reduction in

trainable parameters, and back-propagation speed and inference (complexity). We treat

Wq (or Wk, Wv) as a single matrix of dimension d × d. We denote the number of the

prefix (resp. infix) tokens as lp (resp. li). r is the low-rank mechanism that controls

the bottleneck. In Table 4.2, the activation function of adapter FT is ReLU; Prefix uses

Softmax (Softmax); LoRA is thought to has a LeakyReLU activation function (slope is

1.0), and InA uses LeakyReLU (default slope). Eventually, InA shows the fewest tunable

parameters but the same inference complexity when using LeakyReLU. In Table 4.2,

LeakyReLU has no obvious average gap with GeLU, because they almost have the same

function and derivative waveform. In Table 4.2, L is the number of fine-tuned layers,

O(n) is the computational complexity in terms of the sequence length n [154]. Multi-

head attention consists of several attention layers are running in parallel [154], and LoRA

can be seen as external modules added in a parallel manner [48]. Thus, the inference

computation of LoRA block also should be considered. The inference and fine-tuning

time of InA is longer than LoRA, as InA applies additional maximizing and subtracting

implementations on attention metrics.

Table 4.2: The efficiency of InA and other adaptation FT methods in terms of trainable
parameters, inference (complexity), and update speed (back-propagation).

Methods Tunable Params Inference Complexity per Layer
Fully FT T1 = 3× L× d2 T1 O(n2), GeLU
Adap FT T2 = 2×L×d×r+r+d T1 + T2 O(n), ReLU
Prefix FT T3 = L× d× (lp + li) T1 + T3 O(n2), Softmax
LoRA FT T4 = 2× L× d× r T1 + T4 O(n), LeakyReLU

InA FT T5 = 2× L× d× r T1 + T5
O(n), LeakyReLU
O(n2), GeLU

4.7.2 Effectiveness: InA on Fine-tuning

Our settings for BERT − large and DeBERTa− large on InA are, respectively, similar

to the input/output protocol for BERT ([156]) and DeBERTa ([163]) fine-tuning. Our

settings for InA fine-tuning on RoBERTa−large are, respectively, similar to the adaption

fine-tuning method ([48], [167]).
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Table 4.3: Comparison results of fine-tuning the GLUE development set on BERT−large,
RoBERTa−large, DeBERTaV 2−large andDeBERTaV 3−large with InA (inhibition
level percentile is 0.3). † indicates runs configured in a setup similar to [46] for a fair
comparison.

Model-large & Method
#Train

#Trainable
Parameters

CoLA
Mcc
8.5k

QQP
Acc
364k

MNLI
Acc
393k

SST2
Acc
67k

STS-B
Corr
7k

QNLI
Acc
108k

RTE
Acc
2.5k

MRPC
Acc
3.7k

Avg.

BERT [156] 336.0M 60.6 91.3 86.6 93.2 90.0 92.3 70.4 88.0 84.5
BERT [FT] † 336.0M 64.0 91.3 86.2 93.8 88.9 92.6 71.4 86.6 84.35
BERT [LoRA] † 0.8M 64.2±0.7 91.4±0.2 86.2±0.2 94.2±0.2 89.2±0.2 92.7±0.1 69.2±1.4 84.9±1.3 84.01
BERT [InA] † 0.4M 65.9±0.6 91.5±0.1 86.3±0.2 94.4±0.2 89.0±0.2 92.7±0.1 69.0±1.6 84.8±1.1 84.19
RoBERTa [160] 355.0M 68.0 92.2 90.2 96.4 92.4 93.9 86.6 90.9 88.82
RoBERTa [FT] † 355.0M 68.1 92.2 90.2 96.3 92.3 93.9 86.6 90.9 88.56
RoBERTa [Adpt]†[167] 0.8M 67.8±2.5 91.7±0.2 90.5±0.3 96.6±0.2 91.9±0.4 94.8±0.3 80.1±2.9 89.7±1.2 87.9
RoBERTa [Adpt]†[46] 0.8M 66.3±2.0 91.5±0.1 90.3±0.3 96.3±0.5 91.5±0.5 94.7±0.2 72.9±2.9 87.7±1.7 86.4
RoBERTa [LoRA]†[48] 0.8M 68.2±1.9 91.6±0.2 90.6±0.2 96.2±0.5 92.3±0.5 94.8±0.3 85.2±1.1 90.2±1.0 88.6
RoBERTa[InA] † 0.4M 68.5±1.2 92.2±0.1 90.2±0.4 96.4±0.3 92.0±0.3 94.4±0.4 85.2±0.7 90.8±0.5 88.7
DeBERTaV2 [162] 304.0M 70.5 92.3 91.1 96.8 92.8 95.2 88.3 91.9 90.00
DeBERTaV3 [163] 304.0M 75.3 93.0 91.8 96.9 93.0 96.0 92.7 92.2 91.37
DeBERTaV3 [FT] † 304.0M 74.3 93.0 91.0 96.2 92.6 95.4 90.3 90.7 90.44
DeBERTaV3 [LoRA] † 0.8M 75.6±1.2 93.1±0.1 91.0±0.2 96.6±0.3 92.8±0.2 96.0±0.1 91.2±0.7 92.9±0.2 91.15
DeBERTaV3 [InA] † 0.4M 76.4±1.0 93.2±0.1 90.9±0.3 96.6±0.4 93.2±0.2 96.1±0.1 90.7±0.8 93.1±0.2 91.28

Table 4.4: Comparison results of fine-tuning SQuAD v1.1, SQuAD v2.0 and SWAG on
BERT − large, RoBERTa − large, DeBERTaV 2 − large and DeBERTaV 3 − large
with InA (inhibition level percentile is 0.9). ⋆ indicates being run under the original con-
figuration for a fair comparison. (Note that missing results in the literature are signified
by ‘-’).

Model-large
& Method
#Train

# Trainiable
Parameters

SQuAD
v1.1

F1/EM

SQuAD
v2.0

F1/EM

SWAG
Acc

BERT [156] 336.0M 90.9/84.5 81.8/79.0 88.6
BERT [FT] ⋆ 336.0M 91.3/84.5 81.7/78.4 86.5
BERT [LoRA] ⋆ 0.8M 91.3/84.5 81.7/78.4 86.5
BERT [InA] ⋆ 0.4M 91.3/84.6 81.5/78.1 86.7
RoBERTa [160] 355.0M 94.5/88.9 89.4/86.5 89.9
RoBERTa [FT] ⋆ 355.0M 94.1/88.4 88.9/86.0 88.9
RoBERTa [LoRA] ⋆ 0.8M 94.4/88.7 88.8/86.0 88.9
RoBERTa [InA] ⋆ 0.4M 94.7/89.2 89.1/86.3 88.9
DeBERTaV2 [162] 304.0M 95.5/90.1 90.7/88.0 90.8
DeBERTaV3 [163] 304.0M - 91.5/89.0 93.4
DeBERTaV3 [FT] ⋆ 304.0M 95.4/89.8 91.5/89.0 93.3
DeBERTaV3 [LoRA] ⋆ 0.8M 95.3/89.9 91.5/89.0 93.2
DeBERTaV3 [InA] ⋆ 0.4M 95.4/90.0 91.6/89.0 93.3

4.7.3 InA on the Text Classification Task

We summarise the comparison results on these eight NLU tasks in Table 5.1 in terms of

fine-tuning the architecture of inserting InA into the original BERT− large RoBERTa−
large and DeBERTa− large. In Table 5.1, when using BERT − large as the base, the

average cannot catch up with the performance of using the classical FT method, but

InA fine-tuning outperforms the classical FT method on six out of eight tasks. Although

RoBERTa−large with InA fine-tuning merely shows the fine-tuning advantage on Corpus

of Linguistic Acceptability (CoLA), Quora Question Pairs (QQP) and Microsoft Research

Paraphrase Corpus (MRPC) tasks, it can achieve the highest average result. Figure 4.6

shows the attention heatmap when using InA to fine-tune the GLUE tasks. Fine-tuning

DeBERTaV 3 − large with InA on GLUE can get five out of eight better results, even
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Figure 4.4: Plots of corresponding metrics according to the number of epochs on the
validation split of GLUE, SQuAD v1.1, SQuAD v2.0 and SWAG. The giBERT means
inserting InA (gate inhibition mechanism) into BERT.

though it also cannot achieve a better average. From Table 5.1, we can find that when

fine-tuning Recognizing Textual Entailment (RTE) and MRPC under InA, BERT−large
and RoBERTa− large cannot always get a better performance than other FT methods.

The inferred reason is that the extra tunable parameters cannot be efficiently fine-tuned

with small data.

InA on the Question Answering Task

As we use three large language models as the baseline, BERT− large, RoBERTa− large
and DeBERTa − large, when fine-tuning with InA on SQuAD v1.1 and SQuAD v2.0

([179]), we can find a weak improvement in Table 5.2. Moreover, the obviously dominant

part is that InA inhibits the ‘irrelevant knowledge’ (e.g., ‘I’ and ‘my’) when Inhp = 0.9

(See Figure 4.7). We infer that InA inhibits the information that has a relationship with

the label (the label is ‘red’), for example, the word ‘my’ in the phrase ‘my red’. That is

why InA can achieve relatively better results on the SQuAD task. InA is not only intended

to fine-tune BERT-based LMs, and we report the visualization results on SQuAD-V2 in

terms of using the InA fine-tuning method on RoBERTa− large [160] and Llama2 [62]

(Seen Figures 4.8 and Figure 4.9).

InA on the Multi-Choice Generation Task

In Table 5.2, for the SWAG text generation dataset ([180]), which introduces the task of

grounded commonsense inference, unifying natural language inference and commonsense

reasoning, we find there is no fine-tuning improvement. In Figure 4.13, the input is ‘she

opened the hood of the car’. Humans can reason about the situation and anticipate what

might come next (the label is ‘then, she examined the engine’). The inhibitor can reduce
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the influence of some information, but the reason why such ‘unimportant knowledge’ is

required for the SWAG task is still not clear. We will perform more experiments to figure

out the reason why InA cannot benefit SWAG in our future work.

Different Activation Functions on InA

Table 4.5: When using different activation functions, we set the inhibition level percentile
at 0.3 and present the comparison results on the GLUE development set within five epochs
fine-tuning based on BERT − large.

Model-large
#Train

BERT(30%)
GeLU SELU ELU LeakyReLU ReLU

Functions
CoLa (Mcc) 65.9 62.1 62.8 66.6 64.3
QQP (Acc) 91.5 63.2 63.2 91.4 91.4
MNLI (Acc) 86.3 35.4 35.5 86.3 86.3
SST2 (Acc) 94.4 50.9 92.9 93.6 93.1
STS-B (Corr) 89.0 32.0 77.0 88.9 89.3
QNLI (Acc) 92.7 50.5 92.0 92.3 92.3
RTE (Acc) 69.0 54.9 52.7 70.0 68.6
MRPC (Acc) 84.8 68.4 77.2 84.3 83.8
Avg. 84.20 44.41 69.15 84.18 83.64

We summarise the results of using different activation functions after setting the inhibi-

tion percentile at 30% in Table 5.3. When compared with other activation functions whose

tails are zero or negative, the GeLU activation function, whose negative tails are short,

achieves the best improvement of QQP, Stanford Sentiment Treebank (SST2), Stanford

Question Answering Dataset (QNLI), MRPC and GLUE averages. Although LeakyReLU

with a default slope gets outstanding performance on CoLA and RTE, the total effect

on GLUE tasks is inferior to GeLU. LeakyReLU can provide more stable and smoother

negative values, and this could be the reason why LeakyReLU can outperform GeLU on

these two small downstream GLUE tasks. The negative value deriving from LeakyReLU

activation would provide a stronger inhibition for BERT or variants of BERT (RoBERTa,

DeBERTaV2 and DeBERTaV3). GeLU has a short and tender negative tail, and we

eventually select it as the default activation function.

In Table 5.3, every activation function has its negative tail, except ReLU. Because the

inhibition vector has subtracted one inhibition variable through the GeLU and LeakyReLU

activation functions, some variables become negative, and the output of the inhibition

layer at the end has more negative variables if setting Inhp higher. Thus, we can slightly

‘reweight’ the Q and K matrices with this inhibition vector. The worse performance of

SELU can be a contrary example because it has an upturned tail which provides bigger

negative outputs.
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Inhibition Level in InA

Table 4.6: Comparison results on fine-tuning the GLUE development set, SQuAD v1.1,
SQuAD v2.0, and SWAG—Inserting InA into BERT − large(1*), RoBERTa− large(2*)
and DeBERTa− large(3*). The values after each model are inhibition levels.

Model
#Train

GLUE
SQuAD

v1.1
SQuAD

v2.0
SWAG

(Large Model on InA)
CoLA
Mcc
8.5k

QQP
Acc
364k

MNLI
Acc
393k

SST2
Acc
67k

STS-B
Corr
7k

QNLI
Acc
108k

RTE
Acc
2.5k

MRPC
Acc
3.7k

Avg.
F1/EM
87.6k

F1/EM
130.3k

Acc
73.5k

1*

BERT(0) 65.5 91.5 86.6 93.9 88.7 92.5 66.4 85.0 83.76 91.1/84.3 81.6/78.9 86.6
BERT(0.1) 65.8 91.4 86.5 93.5 88.9 92.4 70.1 83.1 83.96 91.1/84.4 81.3/78.5 86.5
BERT(0.3) 65.9 91.5 86.3 94.4 89.0 92.7 69.0 84.8 84.19 91.1/84.4 81.4/78.1 86.7
BERT(0.9) 64.3 91.4 86.3 93.3 88.3 92.4 71.1 84.3 83.70 91.3/84.6 81.5/78.1 86.7

2*

RoBERTa(0) 64.1 92.2 90.2 95.8 92.0 94.1 85.2 89.0 87.81 93.9/88.4 88.3/84.7 88.3
RoBERTa(0.1) 65.5 92.0 89.5 95.6 92.4 94.4 83.4 91.7 88.05 94.1/88.8 88.5/85.5 88.4
RoBERTa(0.3) 68.5 92.2 90.2 96.4 92.0 94.4 85.2 90.8 88.69 94.2/88.8 88.7/85.3 89.6
RoBERTa(0.9) 67.5 92.1 89.6 95.8 91.6 94.1 85.2 89.7 88.20 94.7/89.2 89.1/86.3 89.9

3*

DeBERTaV3(0) 73.2 93.1 90.9 96.6 93.2 95.5 90.3 91.4 90.65 95.2/89.7 90.8/88.5 91.9
DeBERTaV3(0.1) 76.5 93.2 90.8 96.2 93.2 96.0 90.0 92.3 91.03 95.3/89.9 91.2/88.7 93.3
DeBERTaV3(0.3) 76.4 93.2 90.9 96.6 93.2 96.1 90.7 93.1 91.28 95.4/89.9 91.1/88.4 93.5
DeBERTaV3(0.9) 72.8 93.0 90.9 96.2 92.6 95.5 89.5 90.7 90.19 95.4/90.0 91.6/89.0 93.3

We also summarise the performance of using four different inhibition levels in Table

5.5. For text classification tasks, when the inhibition level percentile is 0.3, InA can

achieve the dominant results. In Figure 4.4, the inhibition mechanism affects the fine-

tuning performance, especially when the inhibition level is between 10% and 30%. But for

the question-answering and adversarial text-generation tasks, when the inhibition level

percentile is 0.9, there is a weak improvement.

Trainable Weights by Using s on InA

InA on Single Key or Query Side. For the single side conditions (either on the Key

or on the Query) and based on DeBERTaV 3− large, we summarise the results in Table

4.7. When the inhibition level Inhp is 0.3, we get the best GLUE average using InA both

on the Key and on the Query. There are two unexpected findings when inserting InA

into the single attention side (Key or Query). The first is that when setting the inhibition

level Inhp = 0.0, we can achieve the best result at 92.1% in terms of fine-tuning the RTE

task. The second is that when fine-tuning the downstream SQuAD v1.1 task with 0.3 and

0.1 inhibition levels, the Key side and the Query side respectively present the best result

at 95.8%/89.3% and 95.8%/89.5%.

Inserting InA into Several Last Layers. To find the best inserting position, for

example, which layer in BERT-like architectures needs inhibition, as well as ascertain how

deep the inhibition should be set (for example, from the 16th layer to the 24th layer), we

summarise the relevant results in Table 4.8 based on DeBERTaV 3− large. We roughly

disassemble the DeBERTa architecture in Figure 4.5 and, depending on this, we insert

InA into several last layers (last 3, 6 and 12 layers).
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Table 4.7: Comparison results on fine-tuning the GLUE development set, SQuAD v1.1,
SQuAD v2.0, SWAG and NER. ( Note that Key* and Query* respectively mean insert-
ing InA into Transformers’ Key side and Query side).

Model
#Train

GLUE
SQuAD

v1.1
SQuAD

v2.0
SWAG

(Large)
CoLA
Mcc
8.5k

QQP
Acc
364k

MNLI-m/mm
Acc
393k

SST2
Acc
67k

STS-B
Corr
7k

QNLI
Acc
108k

RTE
Acc
2.5k

MRPC
Acc
3.7k

Avg.
F1/EM
87.6k

F1/EM
130.3k

Acc
73.5k

Key*

giDeBERTaV3(0) 72.6 93.0 90.9/90.9 96.3 92.8 95.4 88.8 92.2 90.25 94.8/89.2 89.9/86.5 92.2
giDeBERTaV3(0.1) 74.0 93.0 91.2/91.0 96.2 92.9 95.4 89.5 91.9 90.51 94.8/89.3 89.7/86.9 91.6
giDeBERTaV3(0.3) 75.0 93.1 91.0/90.9 96.2 92.8 95.3 91.7 91.7 90.85 95.8/89.389.9/86.4 92.2
giDeBERTaV3(0.9) 72.0 93.1 91.0/91.0 96.3 92.8 95.4 91.3 91.4 90.41 94.8/89.3 90.3/86.9 92.0

Query*

giDeBERTaV3(0) 71.9 93.0 91.0/90.9 96.2 92.8 95.3 92.1 90.2 90.31 94.7/89.2 90.1/86.9 92.2
giDeBERTaV3(0.1) 73.2 92.9 91.3/90.9 96.3 92.7 95.1 89.2 90.2 90.11 95.8/89.590.4/87.7 92.2
giDeBERTaV3(0.3) 73.5 92.9 91.3/90.9 96.2 93.0 95.4 89.5 91.9 90.46 94.8/89.3 89.7/86.9 91.6
giDeBERTaV3(0.9) 74.2 93.0 90.8/90.8 95.6 92.9 95.4 90.6 90.2 90.34 94.8/89.5 89.8/86.7 92.0
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The Last Layer

First 

Three 

Heads

Last 

Three 

Heads

The Last Second LayerThe Last Third LayerThe First Layer

Last 

Three 

Layers

From Input Side to Output Side

  Gate with Inhibition on Several Heads 

(First Three Heads and Last Three Heads)  

  Gate with Inhibition on Several Layers 

(Last Three Layers)  

Input Output

Figure 4.5: Roughly disassembled DeBERTaV3 architecture.

4.8 Analysis and Discussion

We now empirically validate the effectiveness of InA. Based on experimental results from

the benchmarks, we address and answer the following three key questions:

Q1: Is inhibition necessary during adaptation fine-tuning, and how does the InA

method work in this context?

Q2: If inhibition is needed, how should we choose the inhibition level Inhp and select

an appropriate rank r in practical scenarios?

Q3: Does the inhibition adaptation matrix Winhibition effectively inhibit irrelevant

knowledge? If so, which specific irrelevant knowledge is suppressed in practice?

We believe that the answers to Q2 and Q3 provide valuable insights into the funda-

mental principles of using pre-trained language models for downstream tasks.

4.8.1 Difference Between LoRA and InA

We conducted experiments to ensure a fair comparison with LoRA. From Figure 4.6a)

to Figure 4.13a), when the inhibition level is set to 0, i.e., when InA is initialized as

LoRA, InA can reweight the pre-trained parameters. However, if InA is set with a higher

inhibition level, such as Inhp = 0.3 (Figure 4.6c) to Figure 4.13c)), InA can adaptively
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Table 4.8: Comparison results on fine-tuning the GLUE development set, SQuAD v1.1,
SQuAD v2.0, SWAG and NER on language models’ several last layers.

Model
#Train

GLUE
SQuAD
v1.1

SQuAD
v2.0

SWAG

(Large Model on InA)
CoLA
Mcc
8.5k

QQP
Acc
364k

MNLI
Acc
393k

SST2
Acc
67k

STS-B
Corr
7k

QNLI
Acc
108k

RTE
Acc
2.5k

MRPC
Acc
3.7k

Avg.
F1/EM
87.6k

F1/EM
130.3k

Acc
73.5k

Last 3

DeBERTaV3(0) 73.5 92.9 91.0 96.6 92.8 95.5 89.2 90.7 90.27 94.7/89.1 89.7/86.9 91.4
DeBERTaV3(0.1) 73.2 93.0 90.9 96.5 92.9 95.8 90.6 91.1 90.50 94.3/88.6 89.5/86.1 91.0
DeBERTaV3(0.3) 74.2 93.0 91.1 96.2 93.0 95.3 90.2 91.4 90.55 94.6/89.1 89.7/86.8 91.3
DeBERTaV3(0.9) 74.4 93.0 90.9 96.0 93.0 95.3 89.5 91.7 90.48 94.2/88.5 89.9/86.9 91.2

Last 6

DeBERTaV3(0) 72.6 93.0 91.1 96.2 92.9 95.3 88.8 90.9 90.10 94.5/89.2 89.5/86.8 91.2
DeBERTaV3(0.1) 72.9 93.0 91.1 96.2 92.9 95.3 88.8 90.9 90.14 94.5/88.9 89.5/86.7 91.3
DeBERTaV3(0.3) 73.6 93.2 91.0 96.3 93.0 95.7 88.1 91.2 90.26 94.6/89.1 89.5/86.7 91.3
DeBERTaV3(0.9) 74.2 93.1 90.9 96.0 93.0 95.4 88.5 90.9 90.25 94.7/89.0 89.5/86.8 91.2

Last 12

DeBERTaV3(0) 73.4 93.0 91.0 96.2 92.9 95.3 89.2 90.9 90.24 94.5/89.0 89.4/86.7 91.2
DeBERTaV3(0.1) 73.9 93.0 91.0 96.2 92.9 95.5 89.9 91.1 90.44 94.4/88.9 89.5/86.9 91.2
DeBERTaV3(0.3) 74.8 93.2 91.0 96.3 93.0 95.6 89.8 91.3 90.63 94.6/89.0 89.5/86.8 91.3
DeBERTaV3(0.9) 74.2 93.1 90.9 96.0 93.0 95.3 89.3 90.9 90.34 94.7/89.0 89.4/86.7 91.2

suppress irrelevant features, weakening the influence of unnecessary information. A lower

threshold Th has a weaker impact on inhibiting passing information, whereas a higher

threshold inhibits most of the passing information.

Although the performance between LoRA and InA is similar, InA has the advantage

of inhibiting unnecessary information by using an appropriate threshold. InA not only

inherits the information compression ability of LoRA but also adds a mechanism to inhibit

irrelevant information by applying the threshold. InA offers two key advantages over other

adapters like LoRA and Adapter:

(1) InA incorporates the rank of the adapter, r, to control redundant information flow

through the bottleneck, effectively compressing the information.

(2) InA uses a threshold to further limit the passing information, offering an additional

control over the inhibition process. Thus, the passing information in InA is ”incomplete”

in the sense that task-irrelevant parts of the original information are discarded.

4.8.2 Should We Need Inhibition During Fine-Tuning? How

Does It Work?

Redundant features obtained from pre-trained language models can reduce performance,

especially when fine-tuning on small datasets. Therefore, we introduce a similar MLP

architecture (inspired by gate multilayer perceptron (gMLP) [184]) combined with the

proposed inhibition mechanism to address this challenge, which proves to be effective in

reducing the impact of irrelevant knowledge.

We argue that InA is beneficial when fine-tuning pre-trained LMs on downstream NLU

tasks. For instance, RoBERTa, pre-trained on over 160GB of text data with a larger mini-

batch size and Byte-Pair Encoding [185], excels in handling large and diverse vocabularies
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[160]. However, when applying InA to RoBERTa, it does not necessarily lead to better

performance on tasks like RTE. We hypothesize that this is due to InA requiring less

fine-tuning steps and tunable weights to scale the large, robust pretraind weights over

smaller downstream tasks.

DeBERTa, which uses disentangled matrices for content and position vectors [163],

has a stronger contextual connection among input word vectors. InA can inhibit redun-

dant contextual information by scaling these disentangled matrices, effectively allowing

DeBERTa to focus on the most relevant connections. In this way, InA aids DeBERTa by

enabling it to concentrate on the most pertinent relationships in the data.

4.8.3 How to Choose the Inhibition Level Inhp and Select a

Good Rank r in Real Cases?

We investigate the effect of different inhibition levels (Inhp) on fine-tuning tasks such as

GLUE, SQuAD, and SWAG. From Table 5.5, we observe that an appropriate inhibition

level (e.g., Inhp = 0.3) improves text classification performance, while stronger inhibition

(e.g., Inhp = 0.9) benefits question-answering tasks.

In practice, when working with a smaller downstream dataset (e.g., RTE), we rec-

ommend initializing InA with 0% inhibition for the Query side. Alternatively, inserting

InA into both the Query and Key sides with an inhibition level of 30% is also effective.

Based on our experiments, we propose the following heuristic for selecting the appropriate

inhibition threshold:

(1) Start with 0% inhibition, (2) If the performance improves over the baseline, choose

an inhibition threshold between 10% and 30%, (3) If performance does not improve,

increase the inhibition threshold (e.g., 90%).

For selecting the rank r in practical cases, we summarize the results of inserting InA

into the last Transformer layers in Table 4.8. We find that inserting InA into a few layers

does not significantly improve performance when fine-tuning DeBERTaV3 on downstream

tasks. However, the best results are obtained by inserting InA into all layers or as many

layers as memory allows.

4.8.4 Can InA Really Inhibit Irrelevant Knowledge? How Can

It Do So?

To answer these questions, we focus on the performance of the inhibition vector Winhibition

and its ability to suppress irrelevant knowledge.

When fine-tuning on the SQuAD task under five conditions: without InA, and with

InA at Inhp = 0.0, 0.1, 0.3, 0.9, we visualize the averaged attention score heatmap for the
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last second layer (averaging all heads in the 23-th layer) in Figure 4.7. As the inhibition

level increases from Inhp = 0.0 to Inhp = 0.9, the attention scores for ”I” and ”my”

decrease, indicating that the influence of these irrelevant terms is gradually diminished.

This suggests that InA effectively inhibits task-irrelevant knowledge during fine-tuning.

For the second question, we examine the influence of InA on attention scores across five

downstream tasks: CoLA, RTE, MRPC, QNLI, and SWAG. From Table 5.1, we observe

significant improvements on the CoLA task when InA is applied. For example, in Figure

4.6, the attention block primarily focuses on the relevant words such as [’They’, ’him’,

’to’, ’by’, ’making’, ’him’], while irrelevant words like ’to’ and ’by’ are less emphasized

after fine-tuning with InA. This demonstrates that InA reduces the impact of ”noise”

knowledge, making the classification process more efficient and accurate.

However, on the RTE task, InA does not outperform standard fine-tuning. We specu-

late that this is due to the small dataset size and the fact that InA eliminates knowledge

that could potentially match the label in the entailment task. As shown in Figure 4.10,

InA reduces the area of focus in the attention heatmap, eliminating unnecessary terms

like ”Slovenia”, while retaining words that are highly relevant to the label, such as ”3000”

and ”inhabitants”. This demonstrates that InA enhances feature selection by inhibiting

irrelevant information, although its effectiveness can depend on the dataset size.

4.9 Conclusion

We proposed an inhibition adaptation fine-tuning method—InA—which serves as a lightweight

alternative that reduces the influence of irrelevant knowledge while maintaining high

model performance. Specifically, InA retains the significant features of the model while

eliminating both secondary task-relevant and task-irrelevant features, enabling quick task-

switching properties when deployed in real-world services. There are several promising

directions for future work:

(1) The mechanism behind InA fine-tuning, as discussed in this article, clarifies how

InA inhibits task-irrelevant features while maintaining competitive performance on down-

stream tasks. However, on tasks like RTE, the retrieval of ”irrelevant knowledge” and its

alignment with the task label requires further investigation. Similarly, the application of

InA to text generation tasks warrants additional exploration. Moreover, to recover the

inhibited features, InA can be combined with other efficient adaptation methods (e.g.,

prefix-tuning, or other adaptations) that may re-enable the previously inhibited knowl-

edge.

(2) Currently, the selection of weight matrices and inhibition levels for InA is primarily

based on heuristics. A future direction would be to automate the selection of the inhibition
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level during the fine-tuning process, enabling a more task-specific and dynamic adaptation

for pre-trained language models.

(3) The activation function used in InA is another area for potential improvement.

Investigating whether a more effective activation function could provide InA with a more

suitable negative tail could lead to more refined inhibition behavior, which may be an

important avenue for future research.
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CoLA: input_text = ['They caused him to become angry by making him .'] output_text = [' ']

a） b）

c） d）

e）

Figure 4.6: From left to right, fine-tuning BERT − large on CoLA with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), d) InA(0.9).
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SQuAD: text = ['I put my red bag in the black bag .'] question = ['What is the colour of my bag ?'] answer = ['red']

a） b）

c） d）

e）

Figure 4.7: From left to right, fine-tuning BERT − large on SQuAD with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), e) InA(0.9).
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(a) Inp = 0 on the 1st layer. (b) Inp = 0 on the 1st layer. (c) Inp = 0 on the 1st layer. (d) Inp = 0 on the 1st layer.

(e) Inp = 0.1 on the 2nd layer. (f) Inp = 0.1 on the 2nd layer. (g) Inp = 0.3 on the 2nd layer. (h) Inp = 0.9 on the 2nd layer.

(i) Inp = 0 on the 13rd layer. (j) Inp = 0.1 on the 13rd layer. (k) Inp = 0.3 on the 13rd layer. (l) Inp = 0.9 on the 13rd layer.

(m) Inp = 0 on the 23rd layer. (n) Inp = 0.1 on the 23rd layer. (o) Inp = 0.3 on the 23rd layer. (p) Inp = 0.9 on the 23rd layer.

(q) Inp = 0 on the 24th layer. (r) Inp = 0.1 on the 24th layer. (s) Inp = 0.3 on the 24th layer. (t) Inp = 0.9 on the 24th layer.

Figure 4.8: From left to right, fine-tuning RoBERTa− large on SQuAD-V2 with no-InA,
InA(Inp = 0.0), InA(Inp = 0.1), InA(Inp = 0.3), InA(Inp = 0.9).
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(a) Inp = 0 on the 1st layer. (b) Inp = 0 on the 1st layer. (c) Inp = 0 on the 1st layer. (d) Inp = 0 on the 1st layer.

(e) Inp = 0.1 on the 2nd layer. (f) Inp = 0.1 on the 2nd layer. (g) Inp = 0.3 on the 2nd layer. (h) Inp = 0.9 on the 2nd layer.

(i) Inp = 0 on the 16th layer. (j) Inp = 0.1 on the 16th layer. (k) Inp = 0.3 on the 16th layer. (l) Inp = 0.9 on the 16th layer.

(m) Inp = 0 on the 31st layer. (n) Inp = 0.1 on the 31st layer. (o) Inp = 0.3 on the 31st layer. (p) Inp = 0.9 on the 31st layer.

(q) Inp = 0 on the 32nd layer. (r) Inp = 0.1 on the 32nd layer. (s) Inp = 0.3 on the 32nd layer. (t) Inp = 0.9 on the 32nd layer.

Figure 4.9: From left to right, fine-tuning Llama2 on SQuAD-V2 with no-InA, InA(Inp =
0.0), InA(Inp = 0.1), InA(Inp = 0.3), InA(Inp = 0.9).
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RTE: input_text = ['A smaller proportion of Yugoslavia   s Italians were settled in Slovenia ( at the 1991 national census , some 3000 
inhabitants of Slovenia declared themselves as ethnic Italians ) .'] output_text = ['Slovenia has 3,000 inhabitants .']

a） b）

c） d）

e）

Figure 4.10: From left to right, fine-tuning BERT − large on RTE with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), d) InA(0.9).
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MRPC: input_text = ['"We acted because we saw the existing evidence in a new light , through the prism of our experience on 11 September 
, " Rumsfeld said . '] output_text = ['Rather , the US acted because the administration saw " existing evidence in a new light , 
through the prism of our experience on September 11 " .']

a

）
b）

c） d）

e）

Figure 4.11: From left to right, fine-tuning BERT − large on MRPC with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), e) InA(0.9).
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QNLI: input_text = ['Where did Jebe die ?'] output_text = ['Genghis Khan recalled Subutai back to Mongolia soon afterwards, and Jebe 
died on the road back to Samarkand .']

a） b）

c） d）

e）

Figure 4.12: From left to right, fine-tuning BERT − large on QNLI with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), e) InA(0.9).
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Figure 4.13: From left to right, fine-tuning BERT − large on SWAG with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), e) InA(0.9).



Chapter 5

Domain Specific Assistant

Instruction For LLMs

LLMs have shown remarkable generalization capabilities across various tasks when pro-

vided with human-written instruction data. However, the limited quantity, diversity,

and specialized nature of such instruction data raise concerns about the effectiveness

of LLMs in specialized domains like psychotherapy. To address this, we propose two

key solutions: first, we introduce Domain-Specific Assistant Instructions, grounded in

the AlexanderStreet therapy dataset, and second, we employ an adaptation fine-tuning

method combined with Retrieval-Augmented Generation (RAG) to enhance pre-trained

LLMs. Through comprehensive quantitative evaluation of linguistic quality, incorporat-

ing both automatic and human assessments, we demonstrate that pre-trained LLMs fine-

tuned with Psychotherapy Assistant Instructions significantly outperform SOTA LLMs

response baselines. Our Assistant-Instruction framework offers a semi-supervised ap-

proach to align pre-trained LLMs with domain-specific instructions, thereby enriching

these models with essential psychotherapy knowledge.

5.1 Introduction

LLMs have demonstrated impressive generalization capabilities, including in-context learn-

ing [51], chain-of-thought reasoning [52], and biomedical diagnostics [53]. Instruction

tuning of LLMs has enabled them to follow natural language instructions and perform

complex real-world tasks [54]. Two main methods have been developed for instruction-

tuning LLMs: (1) fine-tuning the model on a diverse set of tasks using human-annotated

prompts and feedback [55], and (2) supervised fine-tuning using public benchmarks and

datasets augmented with manually or automatically generated instructions [56]. Addition-

ally, RLHF has proven effective in improving LLMs in various domains, such as medicine

76
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Question: What is DSM-5 and ICD-10 Coding?

Output: The depressive disorders grouping in the fifth edition of the Diagnostic and Statistical Manual of 

mental disorders or DSM-5 contains a number of distinct disorders, each given it's own unique diagnostic 

code. 

Domain: Depressive Disorders.

Concept Explanation

Question Answering

Dialogue Generation

Depressive 

Disorders

Addictive

Disorders

Anxiety 

Disorders

...

Psychotherapy 
In stru ct ion s 
Template
Instruction:
Input:
Output:
Task:
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Psychotherapy Data on Alexander Street

Natural Task 
Identification Domain Knowledge 

Reward on Specific 
Tasks
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Information Extraction
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Step one

Step three

Step fourStep two

Figure 5.1: Schematic representation of Assistant-Instructional prompts in psychother-
apy domains. Step one: Data reformatting; Step two: Task identification; Step three:
Knowledge expansion; Step four: Evaluation.

[57], knowledge graphs [58], multimodal data fusion [186], and biomedical applications

[59], although it is computationally expensive. Self-Instruct tuning [64], [65] and Guess-

Instruction tuning have shown improved performance in aligning LLMs with human in-

tent by learning from instruction-following data generated by advanced instruction-tuned

teacher models (e.g., GPT-3, GPT-3.5, and GPT-4). These instruction-tuning approaches

have been particularly effective in enhancing the zero- and few-shot generalization abilities

of LLMs.

To advance the professional knowledge of LLMs in the psychotherapy domain, this pa-

per presents the Psychotherapy Assistant-Instruction approach. Our method aims to (1)

achieve generalization across various psychological consultation tasks and (2) incorporate

specialized psychological knowledge into commonly used LLMs. Figure 5.1 provides an

overview of our proposed approach, wherein a single model can perform multiple NLPs

tasks within specific psychotherapy domains.

Evaluation of Domain-Specific Data: One of the most critical aspects of this

work is the evaluation, particularly the role of domain-specific training data. In psy-

chotherapy instruction-tuning, achieving human-level professional responses requires a

novel approach. We propose using GPT-4 as an assistant for Assistant-Instruct tuning (a

hybrid self-instruct tuning method) on psychotherapy consulting tasks (illustrated in Fig-

ure 5.2). Our method makes the following contributions: (a) it covers a broad spectrum
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of psychological topics and integrates feedback from GPT-4-generated knowledge; (b) it

incorporates psychotherapy knowledge from professional data, enabling the model to gen-

erate content closely aligned with GPT-4’s output; (c) it demonstrates the effectiveness

of using assistant LLMs-revised instruction data to tune LLMs for psychotherapy tasks,

providing practical insights for building general-purpose LLM-powered agents informed

by assistant LLMs (e.g., GPT-4).

5.2 Problem Statement

The dataset we aim to generate consists of a collection of instructions {It}, where each

instruction defines a specific domain t in natural language. Each domain t comprises

nt ≥ 1 input-output instances {(Xt,i, Yt,i)}nt

i=1. We hypothesize that each domain t has

unique characteristics (as illustrated in the left panel of Figure 1.4). The goal is for a

model M to generate the correct output based on the domain-specific instruction and

corresponding input: M (It, Xt,i) = Yt,i, for i ∈ {1, . . . , nt}.
The instruction is typically framed as: ”Provide suggestions or comments on address-

ing and alleviating the following topic,” and the instance input might be: ”addictive

disorders.” However, there may be cases where the boundaries between instructions and

input are not strictly defined. For instance, if the instruction is ”Summarize the following

description and explain the concept in the [***] domain. Add more common knowledge,”

and the input instance is ”Addiction and Spiritual Crisis,” the instruction domain may

overlap with other domains. This overlap can make it challenging to construct instruc-

tions that are purely professional, as multi-domain knowledge could lead to instability

during training, causing the model to incorporate irrelevant information.

To promote diversity and individuality in the data format, we allow instructions, input

instances, and outputs to integrate additional knowledge from other models. Specifically,

the output Y may be revised by GPT-4, such that Y = Y + Y ′, where Y ′ represents the

additional knowledge generated by GPT-4. As shown in the right panel of Figure 1.4,

we face the challenge of making the data compatible with LLMs, where LLMs themselves

are used to format instructions, inputs, and outputs, ensuring that the data remains both

diverse and usable.
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5.3 Related Work

5.3.1 Psychotherapy-based Conversational Systems

Chatbots are increasingly recognized for their ability to generate human-like social and

emotional responses. However, their effectiveness as automated agents in domains like

psychotherapy requires further investigation. Previous research has explored the potential

and significance of integrating conversational AI into psychotherapy [187], [188]. Some

studies have focused on the use of smart conversational agents to detect neuropsychiatric

disorders [189], [190], employing deep neural networks to generate psychiatric-oriented

responses. Other research [191] has examined the use of conversational agents in psycho-

education and promoting self-adherence in mental health management. Furthermore,

efforts have been made to fine-tune pre-trained language models on psychotherapy-specific

datasets to improve their performance in the domain [192].

5.3.2 Instruction Data for Language Models

The annotation of large-scale instruction data presents several challenges for human an-

notators, especially in terms of 1) creativity, required to generate novel domains, and

2) expertise, needed to craft domain-specific solutions. To address these issues, several

effective approaches have been proposed to generate, optimize, and reformat instructions.

Generate-Instruction: One approach for meta-training involves training the LM to

generate task instructions from input instances and labels [193], [194]. During inference,

the flipped learning method is used to train LMs by selecting the label option most likely

to generate the corresponding task instruction. This method enables the generation of

instructions from data in any format containing input instances and labels. However,

a drawback of this method is that the generated instructions can deviate from the core

task and fail to incorporate professional domain knowledge, such as that required for

psychotherapy.

Self-Instruction: The Self-Instruction approach [56] offers a promising annotation-

free method for aligning pre-trained LMs with instructions. It demonstrates the ability of

LMs to generalize effectively to new tasks using GPT-3 and reformatting the generated

instruction. This method involves concatenating the instruction with the instance input

as a prompt and training the model to generate the output in a supervised manner.

Multiple templates are used to encode both the instruction and the instance input to

enhance the robustness of the model. Although Self-Instruction augments data without

requiring annotations, it still lacks the ability to incorporate new, specialized knowledge,

particularly in professional domains like psychotherapy.
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Figure 5.2: Schematic representation of model fine-tuning and the interaction between
Chatbot and User.

Unnatural-Instruction: Unnatural-Instruction [60] is a large dataset of creative and

diverse instructions that are generated with minimal human intervention. This dataset

is created by prompting a language model with three seed examples of instructions and

eliciting a fourth to create 64,000 unique examples. The dataset can be expanded further

by prompting the model to rephrase each instruction, resulting in approximately 240,000

examples of instructions, inputs, and outputs. While this dataset is highly diverse, it does

not effectively absorb new or professional domain knowledge, which limits its utility in

specialized fields like psychotherapy.

In summary, while these approaches demonstrate promise in generating instructions,

the main challenge remains the incorporation of new, domain-specific knowledge, partic-

ularly in fields requiring specialized expertise such as psychotherapy.

5.3.3 Parameter-Efficient Fine-Tuning of Pre-trained Language

Models

Several SOTA Parameter-Efficient Tuning Method (PEFT) have been introduced, in-

cluding Adapter [46], Prefix-Tuning [47], LoRA [48], GLoRA [170], and InA [7]. These

methods focus on tuning only the added parameters while keeping the pre-trained lan-

guage model frozen. They inject trainable low-rank matrices into transformer layers to

approximate weight updates. Specifically, the methods update the Query, Key, and Value

projection matrices (Wq, Wk, and Wv) in the multi-head attention sub-layer. Using a

low-rank decomposition, the weight update is represented as:

Ho ← f(H concat (P,W )) + s · f(HWdown − Th)Wup, (5.1)

where H ∈ RM×d represents the input hidden vectors, Ho ∈ RM×d is the output of
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the self-attention layer, concat denotes the concatenation operation, f is the activation

function, s ≥ 1 is a tunable scalar hyperparameter, and Th is a threshold. The matrices

Wdown ∈ Rd×r and Wup ∈ Rr×k are used to update the model parameters.

These PEFT methods provide an efficient means to adapt pre-trained models to new

tasks or domains, such as psychotherapy, without the need to fine-tune the entire model,

thereby reducing the computational cost and memory requirements. The effectiveness of

these methods in improving model performance for domain-specific applications, such as

psychotherapy, is a topic of ongoing research.

5.4 Methodology

5.4.1 Data Collection

Alexander Street Press is a website known for its vast collection of video transcripts and

recordings from therapy and counseling sessions, covering topics such as depression, abuse,

trauma, and mental disorders. The video transcript dataset was specifically collected from

the Counseling and Therapy channel on the website. We curated the dataset to include

only English-language sessions recorded between 1980 and 2023, resulting in a set of 1,333

videos and accompanying transcripts. After filtering out short-length and non-informative

videos, the final dataset comprises 1,179 video transcripts, containing a total of 188,421

dialogue turns. To ensure data quality, we performed a cleaning process to remove Unicode

characters, pauses, and other unnecessary elements, resulting in a dataset with 3,141,520

words and a vocabulary size of 30,438.1

On the Alexander Street Press website, most video transcripts and recordings consist

of knowledge presentations and counseling talks. For knowledge presentations, there are

no instruction questions or instance inputs, and the output is the content presented by

the speaker. In the first step, we manually set instructions and instance inputs based on

the discussed topics (e.g., Depressive disorders, Addiction, etc.). In the second step, we

used the GPT-4 API to revise and generate instructions and instance inputs based on the

contents.

5.4.2 Assistant on Annotation and Task Identification

To arrange psychotherapy data to correct tasks, such as (1) concept explanation and

summarization, (2) question answering, (3) mental status assessment, (4) psychological

counseling and (5) information extraction, (6) dialogue generation, (7) sentiment analysis,

1https://alexanderstreet.com/

https://alexanderstreet.com/
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Table 5.1: Prompt used for identifying the type of tasks.

Can the following task be regarded as a question answering task with finite output on [***] domain?
Input: ”JEFFREY MISHLOVE Yeah! Well we’re running out of time... time. I supposed the point is that you’ve
been successful in. . . in developing these devices and... and using them in the laboratory?
Output: ”STEPHEN LABERGE Yes! That’s right! Well, not just in the laboratory, but we developed devices that. . .
that do have sensors built under the mass that could be used at home, so that. . . that of course was one of our major
goals which used to have make lucid dreaming available in general to people so that they could make better lucid
dream.”
Result: Yes
Can the following task be regarded as a dialogue generation task with finite output on [***] domain?
Input: ”CHRISTINA GROF Thank you... thank you. ,JEFFERY MISHLOVE It’s a pleasure to be with you.
,CHRISTINA GROF It’s a real pleasure to be here. ”
Output: ”JEFFERY MISHLOVE When we think of addiction many people still don’t feel that there might be a
connection with. . . with the spiritual quest and in fact they almost seem as. . . as if they opposite ends of the
spectrum, yet it was as. . . as you point out in the thirst for wholeness a phrase that comes from the great Swiss
psychiatrist Carl Jung is it something that took place many decades ago, he. . . he recognized in a letter to the founder
of Alcoholics Anonymous that. . . that there is a relationship between alcoholism and the spiritual quest.”
Result: Yes
Can the following task be regarded as a concept explanation task with finite output on [***] domain?
Input: ” ADDICTIVE DISORDERS ”
Output: ”The human mind can be altered by any number of substances. These may be medications used to treat
illness, infection, or even some of the mental disorders that we’ve looked at elsewhere in this series. They can be
components of the food or beverages we consume that may change our cognition or behavior, or they can even be
substances used to intentionally affect our behavior or perceptions of the world. However, any number of mind-altering
substances can be used to the point that they cause clinically significant distress or functional impairment, leading to
possible intoxication, abuse, addiction and withdrawal. This is the case for those who experience Addictive Disorders,
also known as Substance-related and Addictive Disorders. These individuals may have their cognition, perceptions or
physiology debilitated in reversible or irreversible ways. They may continue to use these substances, even when they
experience clusters of negative effects. And they may become so dependent on a substance that even when they try to
cease or reduce their use, they experience additional behavioral or cognitive consequences. Substance-related disorders
are part of a larger grouping of disorders called substance-related and addictive disorders codified and defined in the
fifth edition of the Diagnostic and Statistical Manual of Mental Disorders or DSM-5. These disorders share a common
trait of activating the brain’s reward system by a substance or addiction, and the individuals with these disorders
continue their use and behavior, whether or not they recognize it as a problem. ”
Result: Yes

(8) event ordering, we use an assistant LLM – GPT-4 to identify which task the human-

constructed instruction should be. We directly prompt the LLM in a few-shot way to

determine this, using 8 classification instructions from the seed tasks. The prompting

template is shown in Table 5.1.

5.4.3 Assistant on Generation, and Evaluation

Our approach involves two main steps. Firstly, we optimize formulations that retain the

content of the original instructions. We prompt a language model to reformulate the tasks

in the core data for each generated task. In some instruction formulations, we embed the

input into or add it behind the “INPUT” template – ”We are talking about [***].” –

to emphasize the topic. This manually constructed “INPUT” also captures the content

discussed by members of the audience in Alexander Street Video, merging the discussed

topic with the point of interest for the audience or visitors. Secondly, following [195], we

use GPT-4 as an assistant to evaluate the retrieved passage’s relevance.The prompting

template is shown in Table 5.2.
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Table 5.2: Prompt used for generation and evaluation.

Prompt for Generation: ”Make a more professional instruction and output based on given context of conversation
in [***] domain. Remove people’s names and UNKNOWN. Then, improve them all based on your knowledge. If you
cannot do that, output nothing.”
Prompt for Evaluation: ”Given an instruction and an output in [***] domain, rate whether the response appears
to be a helpful and informative answer to the query, from 1 (lowest) - 5 (highest). The detailed criterion is as follows:
5: The response provides a complete, highly detailed, and informative response to the query, fully satisfying the
information needs. 4: The response mostly fulfills the need in the query, while there can be some minor improvements
such as discussing more detailed information, having better structure of the response, or improving coherence. 3: The
response is acceptable, but some major additions or improvements are needed to satisfy users’ needs. 2: The response
still addresses the main request, but it is not complete or not relevant to the query. 1: The response is barely on-topic
or completely irrelevant..”

5.5 Experiments

5.5.1 Experiments Settings

We conducted an evaluation of the language models mentioned above for the task of

response generation in the psychotherapy domain, specifically focusing on therapeutic

counseling. The hyper-parameters used for querying the OpenAI API and fine-tuning

LLMs in different experiments are respectively presented in Table 5.3 and Table 5.4.

These hyper-parameters include batch size (bz), learning rate (lr), cut-off, inhibition per-

centile (InhP ), hyper-parameters in InA (r, alpha, and dropout), temperature (Temp.)

for controlling output randomness and diversity, top-p (TopP ) for limiting token selection,

repetition penalty (Penalty), size of beam search algorithm (SizeBeam), and maximum

output length (LengthMax). For generating the assistant instructions based on new psy-

chotherapy data, we utilized the GPT-4 API as the Assistant-LLM. To fine-tune the

generated instruction data effectively, we employed the inhibition adaption fine-tuning

method on Llama2-7B and ChatGLM2-6B based on hyperparameters shown in Table 5.4.

The fine-tuned LLMs were then evaluated by two psychologists on psychotherapy data.

The fine-tuning process required two weeks for Llama2-7B and two days for ChatGLM2-

6B when using four NVIDIA Tesla A100 GPUs with 40GB graphic memory cards. 2

We use a set of hyperparameters shown in Table 5.3 when querying GPT-4 API for

different purposes. These hyperparameters are found to work well with the GPT-4 model.

Table 5.3: Hyper-parameters for querying OpenAI API in different experiments.

Experiments
Settings

Self-Instructions Using GPT-4 API
Temp. TopP Penalty SizeBeam LengthMax

Identifying Tasks 0 0 0 1 3
Generating Instances 0 0 1.5 1 512

Algorithm 1 describes the processing of psychotherapy data crawled from Alexander

Street. We follow an iterative process to construct our own Assistant-Instruction set using

GPT-4 and Self-Instruct [56].

2The code and data can be available at https://github.com/ChengKang520/

psychotherapy-assistant_instruction

https://github.com/ChengKang520/psychotherapy-assistant_instruction
https://github.com/ChengKang520/psychotherapy-assistant_instruction
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Table 5.4: Hyper-parameters for fine-tuning pre-trained LLMs in different experiments.

Experiments
Settings

InA Fine-Tuning
bz lr epochs InhP r alpha dropout

Assistant-Instruction 128 0.001 40 0.3 32 16 0.05

Algorithm 1: Pseudo code for prompt engineering, GPT-4 call and hyper-
parameters in data generation. The data flow is highlighted in blue.
Input: prompt input, prompt no input.

1 prompt input: (
2 ”Make a more professional instruction, input and output based on the given context in [***]

domain. \n\n ”
3 ”Remove people’s names and UNKNOWN. Add more knowledge based on your knowledge. If

you cannot do that, output nothing. \n\n ”
4 ”### Instruction: \n {instruction}\n\n ### Input: {input}\n\n ### Response:
{response}”

5 ),
6 prompt no input: (
7 ”Make a more professional instruction, input and output based on the given context in [***]

domain. \n\n ”
8 ”Remove people’s names and UNKNOWN. Add more knowledge based on your knowledge. If

you cannot do that, output nothing. \n\n ”
9 ”### Instruction: \n{instruction}\n\n ### Response: {response}”

10 )
Output: output.

11 output = openai.ChatCompletion.create (
12 model =”chatgpt-turbo”,
13 messages [ ”role”: ”user”, ”content”: prompt ],
14 temperature = 1.0,
15 top.p=1.0, # nucleus sampling over entire vocabulary
16 max tokens=512, # the max number of generated tokens
17 )

5.5.2 Models

We conducted an evaluation of the language models mentioned above for the task of

response generation in the psychotherapy domain, specifically focusing on therapeutic

counseling. For generating the assistant instructions based on new psychotherapy data,

we utilized the GPT-4 API as the Assistant-LLM. To fine-tune the generated instruction

data effectively, we employed the inhibition adaption fine-tuning method [3] and self-RAG

[195] on Llama2-7B [62], as well as ChatGLM2-6B [196]. The fine-tuned LLMs were then

evaluated by two psychologists on psychotherapy data.

5.5.3 Metrics

As shown in Table 5.7, our fine-tuned LLMs are evaluated under two main methods:

Automatic evaluation and Human evaluation. For the automatic evaluation, we submit

200 generated answers and use Rouge-L [197] and Fluency [198] to compare the generated

output with a reference text and calculate a score for the similarity evaluation. For the
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Table 5.5: The manually constructed Instruction and GPT-4 revised Assistant-Instruction
on the Depressive Disorder domain.

Instruction: Instruction:
What suggestions or comments you can pro-
vide to address or alleviate the following top-
ics?

Kindly provide professional suggestions or comments on effectively
addressing and alleviating [Depressive Disorders].

Input: Input:
We are talking about [Depressive Disorders]. We are discussing [Depressive Disorders].
Output: Output:
A major depressive episode has a number of
characteristic features, which take place most
of the day, nearly every day, where relevant.
The two main characteristics are a depressed
mood, and a noticeably decreased interest
in most activities. Other characteristics in-
clude trouble sleeping, diminished hunger or
pronounced weight loss, trouble concentrat-
ing or making decisions, fatigue or loss of en-
ergy, recurring suicidal thoughts with or with-
out intent to act on these thoughts, feelings
of worthlessness or excessive or inappropriate
guilt, psychomotor agitation or retardation,
and feelings of low self-worth or pronounced
guilt. These symptoms must cause marked
distress in the patient’s work or social life.
For all of these episodes the clinician should
ensure that the symptoms are not better ex-
plained by another medical condition or by
the affects of a substance.

A major depressive episode is characterized by a range of distinct
features that persist for most of the day, nearly every day. The
primary indicators include a persistent low mood and a significant
decrease in interest or pleasure in most activities. Other symptoms
may involve sleep disturbances, changes in appetite or weight, diffi-
culty concentrating or making decisions, fatigue, recurring thoughts
of suicide with or without intent to act on them, feelings of worth-
lessness or excessive guilt, psychomotor agitation or retardation, and
feelings of low self-worth. These symptoms should cause marked dis-
tress in the individual’s work, social life, or daily functioning. When
addressing Depressive Disorders, clinicians should ensure that the
symptoms are not better explained by another medical condition or
the effects of substance use.
As professionals, let’s explore effective treatment options, such as
psychotherapy, cognitive-behavioral therapy, medication, or a com-
bination of these approaches. Encouraging patients to engage in
regular physical activity, maintain a healthy diet, and establish a
supportive social network can also be beneficial. Furthermore, it
is crucial to foster a compassionate and understanding environment
to help individuals with Depressive Disorders seek appropriate help
and support.

Perplexity: 6.71 Perplexity: 2.15

human evaluation, we also submit 60 generated outputs (20 examples for each tasks,

as we have 3 main tasks) without model and domain information to two professional

psychologists, and based on their professional psychotherapy knowledge, they will measure

the quality of the generated content according to the questions and answers. There are

six grades that they will use to mark the quality of generated content: Extremely Bad

(1), Bad (2), Neutral (3), Acceptable (4), Good (5) and Very Good (6). They should

consider the readability, professional and match score (that measures the match with the

domain knowledge.

5.5.4 Analytic Experiments

Performance on Revision

Due to numerous vocabulary and grammar errors in the original psychotherapy data, man-

ual processing and revision of these errors were not feasible. In Table 5.1, we presented the

one command that requires generated instructions from GPT-4. The right panel of Table

5.5 contains additional information contributed by GPT-4, such as common knowledge

about depressive disorders, including psychotherapy, cognitive-behavioral therapy, medi-

cation, and a combination of treatment approaches. These recommendations from GPT-4

are considered common-sense by psychologists, but the original psychotherapy data lacked
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Table 5.6: Based on Llama2-7B, we illustrate the performance of Zero-Shot, inhibited
LoRA Tuned and RAG methods on Psychotherapy data.

Instruction:
Please provide professional suggestions or comments to effectively address and alleviate [Autism].
Input:
We are discussing [Autism].
Output from Zero-Shot:
Autism is a developmental disorder that can cause significant social, communication and behavioral challenges.
There is no known single cause for autism, but increased awareness and funding support research into possible
causes and better ways to treat the disorder.

Output from Inhibited LoRA:
Autism is a developmental disorder that can cause significant social, communication and behavioral challenges. It
is a spectrum disorder, which means that symptoms and severity vary widely among individuals.

Output from Inhibited LoRA + RAG:
Autism is a developmental disorder that can cause significant social, communication and behavioral challenges. It
is a spectrum disorder, which means that symptoms can range from mild to severe. Some people with autism may
also have other conditions, such as attention deficit hyperactivity disorder (ADHD), anxiety disorders, or epilepsy.
Applied Behavior Analysis (ABA) a widely recognized and evidence-based therapy for Autism. ABA techniques
focus on promoting positive behaviors and reducing challenging behaviors. Speech and language therapy can help
improve communication skills, such as speech articulation, expressive language, and social communication.

sufficient common knowledge (because the original psychotherapy data merely has profes-

sional knowledge). The instructions and instance inputs were also refined by GPT-4 based

on the given command. Perplexity is a metric that gauges the language model’s ability

to predict a sequence of words. The perplexity of the right panel is lower than that of

the left panel. This revision process makes the content more LLM-friendly, transforming

”professional knowledge format” into a more accessible ”common knowledge format” (or

open-domain knowledge format).

Generation on Psychotherapy Domain

When comparing to the content generated by pre-trained ChatGLM2-6B, we observed

that the RAG method contains additional professional knowledge (can be seen from Table

5.6). While this extra knowledge provides more professional information, pre-trained

LLMs could not offer further professional insights into autism. When comparing the

generated content of ChatGLM2-6B fine-tuned on inhibited LoRA to that of ChatGLM2-

6B, we found that the former provides more refinedly revised information (However, this

difference is not obvious). For example, it offers insights on professional explanation, such

as ” It is a spectrum disorder, which means that symptoms and severity vary widely among

individuals.”.

Evaluation

We present a performance summary of different instruction-tuning methods applied to

two pre-trained LLMs in Table 5.7. While the Rouge-L and Fluency evaluation results

show improvement with the use of Assistant-Instruction. To validate the performance, we
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Table 5.7: For evaluating the performance of LLM on psychotherapy domain, two methods
- inhibited LoRA and RAG - were used on two pre-trained LLM have been tuned on
Assistant-Instruction using .

Inhibited LoRA Finetuning (without / with Asisstant-Instruction)
Pretrained

LLM
Automatic Human Evaluation

Rouge-L ↑ Fluency ↓ Read Prof Match
ChatGLM2-7B 24.3/27.1 49.4/48.7 4.8/4.9 2.9/3.3 2.1/2.5
Llama2-7B 15.1/16.9 20.9/20.5 5.0/5.2 3.0/3.2 1.9/2.3

Retravel Augmented Generation (without / with Asisstant-Instruction)
Pretrained

LLM
Automatic Human Evaluation

Rouge-L ↑ Fluency ↓ Read Prof Match
ChatGLM2-7B 25.1/32.8 56.4/46.7 4.6/5.3 3.9/4.2 2.9/3.3
Llama2-7B 15.4/22.4 30.3/20.7 4.8/5.2 3.7/4.1 3.0/3.4

use a selected portion of psychotherapy data as a validation set. Through content revising

and leveraging additional common knowledge from GPT-4, both of these two LLMs show

significant enhancement in matching the revised answers. Pre-trained LLMs can provide

clients with comments to address psychological problems, but the quality of generated

content may not always be fully accepted by psychologists. From Table 5.7, we observe

that psychologists tend to prefer models that have been fine-tuned on psychotherapy data.

As most LLMs lack specialization in a specific domain, they often require more domain-

specific knowledge to improve their performance in professional domains. Because LLMs

have been pre-trained on a vast corpus, giving them an inherent advantage in readability,

and the size of tokens used does not seem to affect their performance significantly. Re-

garding the professionalism of the generated content, the psychologists gave higher scores

to models that had been fine-tuned on psychotherapy instruction data compared to the

corresponding original LLMs.

Human Evaluation Agreement

To assess the reliability of our human evaluation, we conducted an inner-rater agreement

analysis [56] between our two evaluators. We used Cohen’s κ to measure inter-rater agree-

ment for categorical items. The 6-level rating scale (ranging from 1 to 6) was treated as

a categorical variable for each aspect under consideration. The resulting κ value was

0.63, indicating a moderate level of agreement according to common practice. Further-

more, we computed the Spearman correlation coefficient ρ between the ratings of our two

evaluators, treating the ratings as ordinal variables (ranging from 1 to 6). The obtained

coefficient was ρ = 0.81, demonstrating a high correlation between the two evaluators.

These results indicate a reasonably reliable human evaluation process for our study.
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5.6 Conclusion

We propose a novel method called ASSISTANT-INSTRUCT for fine-tuning or retriev-

ing information from LLMs to improve their instruction-following ability. This method

combines both common knowledge and psychotherapy professional knowledge to gener-

ate instruction data with the help of experts. It retains the general knowledge already

present in pre-trained LLMs and incorporates psychotherapy-specific knowledge from

expert-presented instructions. To enhance fine-tuning, as well as retrieval knowledge, we

format the psychotherapy data, such as presentations, talks, and conversations, to make

it more compatible with LLMs. Human evaluation of this method demonstrates signifi-

cant improvement compared to existing instruction methods. ASSISTANT-INSTRUCT

can serve as an initial step to align pre-trained LLMs with LLM-revised instructions, and

further research can build upon this method to enhance instruction-following models.



Chapter 6

LLM-ABBA For Digital Health

The success of LLMs in the time series domain has been demonstrated through various

benchmarks. By utilizing symbolic time series representations, it is possible to effectively

bridge the gap between LLMs and time series data. However, the remaining challenge

lies in exploiting the semantic information embedded in time series through symbols or

existing tokens of LLMs, while simultaneously aligning the LLMs embedding space with

the domain-specific information inherent in the time series data. The Symbolic Time

Series Approximation (STSA) method, known as ABBA, has shown exceptional efficacy in

preserving key time series features by modeling time series patterns in terms of amplitude

and period, while leveraging existing tokens of LLMs.

In this paper, we introduce a method called LLM-ABBA, which integrates ABBA

with large language models for various downstream time series tasks. By symbolizing

time series data, LLM-ABBA outperforms recent SOTA methods in some UCR data

and three medical time series classification tasks. Additionally, a fixed-polygonal chain

technique is introduced within ABBA to prevent significant drift during forecasting tasks

by mitigating the effects of cumulative errors caused by misused symbols during the

transition from symbolic to numerical values. In time series regression tasks, LLM-ABBA

sets a new SOTA on Time Series Extrinsic Regression (TSER) benchmarks. Furthermore,

LLM-ABBA demonstrates competitive prediction performance compared to the latest

SOTA results in time series prediction. We believe this framework can be easily extended

to other time series domains as well.

6.1 Introduction

Time series are fundamental mathematical objects with applications across a wide range

of disciplines, such as classification [199], regression [200], and prediction [201]. Recently,

the potential of LLMs in time series applications has been increasingly recognized. A

89
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recent review [202] identifies three main LLM-based approaches for learning complex se-

mantic and knowledge representations from time series to perform various tasks. The

first approach involves patching and tokenizing numerical signals and related text data,

followed by fine-tuning on time series tasks [67], [203], [204]; the second approach prepro-

cesses time series data to fit LLM input spaces by adding a customized tokenizer [205];

and the third approach builds foundational models from scratch, aiming to create large,

scalable models that are both generic and domain-specific [206], [207].

Each of these techniques has its own limitations. Patching and tokenizing time se-

ries segments enables the mapping between time series data and the latent embedding of

LLMs, but it requires generating numerical values digit by digit, which slows down the

generation speed [204]. Additionally, while adding a customized tokenizer allows LLMs

to handle the positions of time series patterns and reproduce the internal logic of time se-

ries signals [208], tokenizers not designed for numerical values separate continuous values

and ignore the temporal relationships in time series. This method therefore necessitates

converting tokens into flexible continuous values [209], which introduces the risk of seman-

tic loss during the transition from the time series feature space to the latent embedding

space of LLMs. Building foundational time series models from scratch can address some of

these issues, but it remains challenging due to the high development costs and expensive

training requirements [202].

Figure 6.1: The integration of time series and LLM demon-
strates potential in solving complex real-world problems.

By aligning time se-

ries with natural lan-

guage, large language

models and specialized

time series models form

a new paradigm where

LLMs are prompted with

both time series data

and text-based instruc-

tions [202]. In this

paradigm, time series

and textual information

provide essential con-

text, LLMs contribute

internal knowledge and

reasoning capabilities, and

time series models offer reliable pattern recognition. This novel integration is depicted

in Figure 6.1, where the successful combination of these components demonstrates the
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potential for a unified, general-purpose system for next-generation time series analysis.

The challenge, however, lies in developing a tool that can transform the internal patterns

of time series into a form that LLMs can recognize (Step 1 in Figure 6.1). Moreover, this

tool must also be capable of transforming the generated content back into the time series

domain to support time series analysis (Step 2 in Figure 6.1).

STSA is a method that converts time series data into symbols, establishing a bridge

between strings and numerical time series. This enables the Chain-Of-Pattern (COP) of

strings to carry more information than raw data. By symbolizing time series, one can

model them as native languages, encoding them as a sequence of strings and applying

efficient text analysis techniques, such as converting time series forecasting into next-

token prediction in text. STSA aligns time series features with symbols both implicitly

and explicitly, allowing for the manipulation of natural language processing techniques on

time series data. Ideally, this eliminates the need to (1) patch and tokenize time series

segments, (2) add an extra customized tokenizer set, or (3) build foundational time series

models from scratch. Symbolic representations of time series can reveal the linguistic

logic hidden within the signals, providing LLMs with the ability to understand temporal

patterns. Inspired by this idea, the goal is to develop a method that can efficiently

transform numerical time series into symbols and fine-tune LLMs for time series analysis

tasks (e.g., classification, regression, and prediction).

However, integrating STSA methods with LLMs remains a challenge. Applying LLMs

to symbolic time series representations introduces difficulties. First, we must address the

issue of symbolic consistency in STSA methods, as symbols representing the same con-

cept in different time series should remain consistent. It is also unclear whether LLMs

will learn consistent knowledge from transformed symbols that encode time series pat-

tern logic. Additionally, while LLMs can generate text based on given information, it is

uncertain whether they can generate symbolic series and reconstruct time series pattern

logic via STSA methods. These challenges lead us to ABBA [71] (including its accelerated

variant Fast Adaptive Brownian Bridge-based symbolic Aggregation (fABBA) [72]), the

most recent STSA method, which offers a competitive advantage in capturing the shape

of time series data compared to other STSA methods. Unlike other methods, ABBA

allows users to define custom strings for symbolization and provides open-source software

with user-friendly APIs1. Each ABBA symbol is linked to a unique real-valued cluster

center, enabling a natural word embedding for symbols, akin to a native language. The

effectiveness of STSA methods can be evaluated by visualizing their symbolic reconstruc-

tion. A comparison of reconstruction using Symbolic Aggregate approXimation (SAX)

[210] and fABBA [72] is shown in Figure 6.2. It is clear that SAX fails to capture the

1https://github.com/nla-group/fABBA
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time series trend in both figures, and the peak information in figure (b) is missing in the

SAX reconstruction. In contrast, fABBA better captures the essential information of time

series patterns.
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Figure 6.2: Plot (a) shows a sine function with 1,000 points, and (b) shows the ECG-
FiveDays time series from the UCR Archive. We first perform fABBA with tol= 0.1
and α = 0.1 and perform SAX with approximately the same length of symbolic represen-
tation and the number of distinct symbols. In plot (a), fABBA generates symbols “aB-
bCbCbCbCbCbCbCA” while SAX generates symbols “aACBbaACBbaACBbaAABb”; in
figure (b), fABBA generates symbols “fAcaDECeBdbF” while SAX generates symbols
“AAAAAABbCcDaaaAaa”.

In this paper, we propose LLM-ABBA, a method that enables LLMs to understand

time series data by using ABBA to transform numerical time series signals into sym-

bolic series. Specifically, LLM-ABBA first converts time series signals into compressed

representations by adaptively compressing the numerical inputs. These compressed repre-

sentations are then digitized with predefined symbols or pretrained tokens. LLM-ABBA

provides LLMs with a series of symbols (or pretrained tokens) that they can recognize,

and these symbols encapsulate the COP of the time series signals. For classification

tasks, the goal is to identify the symbolic series, while for forecasting or regression tasks,

an additional step is taken to predict future time series values. By using the QLoRA

fine-tuning method [211], LLM-ABBA strikes a balance between task performance and

efficiency, ensuring adaptability across various domains. As a result, LLMs are able to

incorporate the COP of time series and analyze them from a macroscopic perspective,

supported by domain knowledge from instructive prompts.

Our contributions include:

1. We propose a unified and improved ABBA approach for efficiently symbolizing mul-

tiple time series and mitigating accumulated shifts in time series reconstruction,

facilitating effective inference over out-of-sample data.
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2. For time series regression tasks, LLM-ABBA achieves SOTA performance, and it

also delivers competitive results in medical time series classification tasks. To the

best of our knowledge, this is the first work to practically integrate LLMs with

STSA, and we believe our approach can be easily extended to other STSA methods.

3. LLM-ABBA retains language semantics and learns the COPs of time series via

adapter fine-tuning methods in time series forecasting tasks.

4. The multi-modality and universality of LLMs in time series tasks lead to significant

improvements.

The rest of the paper is structured as follows. Section 6.2 discusses related work in

applications of LLMs to time series. Section 6.3 lays the foundation of the ABBA method

and proposes our LLM-ABBA framework. Section 6.4 presents the simulations of our

method as well as the comparisons between our method and SOTA methods. Section 6.5

discusses the limitations of our method and future work. Section 6.6 concludes the paper.

6.2 Related work

LLMs for time series methods have seen significant advancements in recent years. The

work by [205] suggests that this success arises from the ability of LLMs to naturally

model multimodal distributions of time series data. By framing time series forecasting

as a sentence-to-sentence task, AutoTimes [212] minimizes the number of tunable pa-

rameters needed to generate time series embeddings, while freezing the parameters of

the LLM. On the other hand, Frozen Pretrained Transformer (FPT) [68] fine-tunes LLM

parameters to serve as a general representation extractor for various time series analysis

tasks. These approaches capitalize on inherent token transitions, which improves model

efficiency. For multivariate time series forecasting, UniTime [213] trains and fine-tunes a

language model to offer a unified forecasting framework across multiple time series do-

mains. Using advanced prompting techniques, PromptCast [214] converts time series data

into text pairs, while TEMPO [215] models specific time series patterns—such as trends

and seasonality—using weighted scatterplot smoothing [216].

Tuning-based predictors leverage accessible LLM parameters, typically involving pre-

processing and tokenizing numerical signals alongside related prompt text, followed by

fine-tuning on time series tasks [202]. To summarize, there are four key steps required to

adapt LLMs to time series tasks:

1. Tinp = Pre-processing(T ): The time series set T is pre-processed to generate specific

knowledge-contained inputs Tinp, using operations such as a patching operation [203],

[212] or weighted scatterplot smoothing [215];



CHAPTER 6. LLM-ABBA FOR DIGITAL HEALTH 94

2. Minp = Tokenizer(Prompt, Tinp): An optional step involves performing a tokenizer

operation on the time series Tinp and the related prompt text to create a sequence

of text tokensMinp;

3. Moutp = f∆
LLM (Minp): With the instruction prompt Prompt, time series tokens (and

any optional text tokens) are fed into f∆
LLM(·), where partial unfreezing or additional

adapter layers may be used. The outputMoutp can either be a fine-tuned result or

an intermediate result;

4. Ŷ = Task (Moutp): Finally, an additional task operation, denoted as Task(·), is
applied to generate the required output label Ŷ for the specific analysis task.

Algorithm 2: Greedy sorting-based aggregation

1. Scale and sort data points, and assume they are denoted
ps1, . . . , p

s
n. Label all of them as “unassigned”.

2. For i ∈ {1, . . . , n} let the first unassigned point psi as
starting point and set j := i. If there are no unassigned
points left, go to Step 6.

3. If ∥psi − psj∥2 ≤ α,

• assign psj to the same group as psi

• increase j := j + 1

4. If j > n or termination condition is satisfied, go to Step 2.
Otherwise go to Step 3.

5. For each group computed, compute the center of the group
as the mean of all its points.

6.3 Methodologies

6.3.1 ABBA Symbolic Approximation

Our approach is inspired by the observation that speech signals often contain rich seman-

tic information [217], enabling language models to excel across a wide range of tasks [202]

and references therein. However, directly applying language models to time series data is

challenging due to the numerical nature of time series and the absence of useful embed-

ding patterns. Additionally, the high dimensionality of time series makes it difficult for

sequential or recurrent models to capture dependencies within the data. As such, learn-

ing a symbolic representation of time series while reducing their dimensionality presents a
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practical yet complex problem. The ABBA method, a symbolic approximation approach,

addresses this challenge by compressing the time series into a symbolic representation

that encodes amplitude and period, with each symbol reflecting the oscillatory behavior

of the time series over a specific period.

ABBA utilizes adaptive polygonal chain approximation followed by mean-based clus-

tering to symbolically represent time series. The reconstruction error associated with

this representation can be modeled as a Brownian bridge with pinned start and end

points. ABBA symbolization involves two primary procedures: compression and digiti-

zation, which together aggregate a time series T = [t1, t2, . . . , tn] ∈ Rn into its symbolic

representation A = a1a2 . . . aN , where N ≪ n and ai is an element from a specific letter

set L, known as the dictionary in the ABBA procedure.

Compression

The ABBA compression step calculates an Adaptive Piecewise linear Continuous Ap-

proximation (APCA) of the time series T . Compression plays a critical role in dimen-

sionality reduction, where a user-defined tolerance, denoted tol, determines the degree

of reduction. The compression process begins by adaptively selecting N + 1 indices

i0 = 0 < i1 < · · · < iN = n, such that the time series T is approximated well by a

polygonal chain passing through the points (ij, tij) for j = 0, 1, . . . , N . This results in

a partition of T into N segments pj = (lenj, incj), representing the cardinality and in-

crement of each subseries Tij−1:ij = [tij−1
, tij−1+1, . . . , tij ], where lenj ∈ N is the segment

length, and incj ∈ R is the increment. Each segment pj is represented by a straight line

connecting the endpoints tij−1
and tij .

The partitioning criterion for selecting indices ensures that the squared Euclidean

distance of the values in each segment pj from the straight line is bounded by (lenj − 1) ·
tol2. Mathematically, this criterion is expressed as:

ij∑
i=ij−1

(
tij−1

+ (tij − tij−1
) · i− ij−1

ij − ij−1

− ti

)2
≤ (ij − ij−1 − 1) · tol2. (6.1)

Thus, the partitioning criterion ensures that the error in approximating each segment

with a polygonal chain is bounded by (lenj − 1) · tol2. The polygonal chain can be

recovered exactly from the initial time value t0 and the tuple sequence [p1, p2, . . . , pN ],

with the reconstruction error modeled as a Brownian bridge. A smaller tol value ensures

better compression, particularly for time series with complex features such as trends,

seasonal cycles, and pulses. As noted in [71], the error bound between the original and

reconstructed time series is upper-bounded by (n−N) · tol2.
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Digitization

After compression, ABBA performs digitization to produce a symbolic representation.

Prior to digitizing, the lengths and increments of the segments are normalized by their

respective standard deviations, σlen and σinc. Scaling is then applied using a parameter

scl to control the relative importance of the segment length compared to its increment.

The digitization process proceeds by clustering the scaled tuples psi =
(
sclleni

σlen
, inci
σinc

)
,

where i = 1, . . . , N . If scl = 0, clustering is performed solely on the increment values,

while if scl = 1, the lengths and increments are treated with equal importance.

The clustering procedure is based on a mean-based technique in Euclidean space.

Given the scaled input P s = [ps1, . . . , p
s
N ] ∈ R2×N , the goal is to find a codebook C =

[c1, . . . , ck] ∈ R2×k of k clusters, where k ≪ N , such that the Sum of Squared Errors (SSE)

is minimized. A good codebook produces clusters S1, S2, . . . , Sk that minimize the SSE,

which is the sum of squared distances between each point ps ∈ Si and its corresponding

cluster center ci.

In practice, the suboptimal k-means problem can be solved using a greedy sorting-

based aggregation technique [72], which significantly speeds up the clustering process

compared to traditional k-means. The clustering error is controlled by the parameter α,

and the expected SSE value is given by α2(N−k)
2

.

Once clustering is complete, each point psi is assigned to the closest symbolic center

ci ∈ C, and the symbolic representation is constructed by assigning a unique symbol to

each center. These symbols can be represented as text characters (e.g., ASCII codes or

other character sets) and can be adapted to LLM pretrained tokens.

Inverse Symbolization

The inverse symbolization step converts the symbolic representation A back into a re-

constructed time series T̂ , which is crucial for certain value prediction tasks. Inverse

symbolization is followed by an inverse-digitization process, which uses the k represen-

tative cluster centers ci ∈ C to replace the symbols in A and denormalize them. This

results in a 2-by-N array P̃ , which is an approximation of P . Each p̃i ∈ P̃ corresponds

to the closest symbolic center ci ∈ C.

Since the inverse digitization often leads to non-integer values for the reconstructed

lengths len, a rounding method is applied to align the accumulated lengths with the

nearest integers. The rounding is performed iteratively, starting with the first length:

(l̂en1, înc1), (l̂en2, înc2), . . . , (l̂enN , încN) ∈ R2, (6.2)

After rounding, the final reconstructed time series T̂ is obtained by recovering P̂ from
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the initial time value t0 and the tuple sequence, as shown in Equation (6.2).

6.3.2 Error Analysis Reconstruction

We focus on the reconstruction error of ABBA’s symbolization, as a symbolic represen-

tation with a higher reconstruction error is considered less informative. It is important

to note that the reconstruction of time series from the compression procedure is achieved

by forming a polygonal chain T̃ , which connects the selected tuples {(ij, tij)}Nj=0 from

the original time series T with lenj = ij+1 − ij. As described in [71], the polygonal

chain T̂ , formed by stitching together the tuples {(̂ij, t̂ij)}Nj=0 via a tuple sequence P̂ , is

reconstructed through inverse symbolization. This leads to Theorem 6.3.1.

Theorem 6.3.1. Let (µlen
i , µinc

i ) = 1
|Si|
∑

(len,inc)∈Si
(len, inc), where Ulen = {µlen

i }ki=1

and Uinc = {µinc
i }ki=1 represent the mean sets for len and inc, respectively. Since i0 = 0,

the reconstruction indices and size of time series values are given by:

(̂ij, t̂ij) =

(
j∑

ℓ=1

l̂enℓ, t0 +

j∑
ℓ=1

încℓ

)
, for j = 0, . . . , N, (6.3)

where (l̂enℓ, încℓ) are the computed cluster centers, i.e., l̂enℓ ∈ Ulen and încℓ ∈ Uinc.

Theorem 6.3.1 demonstrates that the accumulated deviations from the true lengths

and increments are canceled out (as analyzed in [71]) at the right endpoint of the last

piece pN . Thus, (̂iN , t̂iN ) = (iN , tiN ) = (n, tn), indicating that the start and end points of

T̂ , T̃ , and T are identical. Consequently, we obtain the following result.

We define the local deviation of the increment and length as:

dincℓ := încℓ − ĩncℓ, dlenℓ := l̂enℓ − l̃enℓ. (6.4)

Theorem 6.3.2 ([71]). ∑
i

∑
(len,inc)∈Si

(dlen, dinc) = (0, 0).

Theorem 6.3.3. Assume that ABBA is performed with hyperparameter α, resulting in k

clusters S1, . . . , Sk. Then, we have:

max
ℓ
{(dincℓ )2 + (dlenℓ )2} ≤ α2, (6.5)

and further:

σ = max
i=1,...,k

1

|Si|
∑

(len,inc)∈Si

(
|len− µlen

i |2 + |inc− µinc
i |2

)
≤ α2,
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Following Theorem 6.3.3, σ is explicitly controlled by α, eliminating the need to es-

timate the additional parameter tols used in [71], as it is now directly related to the

hyperparameter α.

Given the N data points selected by the adaptive polygonal approximation chain, we

define: elenj :=
∑j

ℓ=1 d
len
ℓ and eincj :=

∑j
ℓ=1 d

inc
ℓ . It is evident that eincj = t̂ij−tij if elenj = 0

for j = 1, . . . , N . This leads to Theorems 6.3.4 and 6.3.5.

Theorem 6.3.4.

|eincj | ≤ j
√

α2 − (dlenℓ )2 ≤ j|α|,

where j = 0, . . . , N .

Similarly, the shift of the time series satisfies |elenj | ≤ j
√
α2 − (dincℓ )2 ≤ j|α| for

j = 0, . . . , N .

Theorem 6.3.5.

P(|eincj | ≥ h) ≤ exp

(
− h2

2jα2

)
and P(|elenj | ≥ h) ≤ exp

(
− h2

2jα2

)
.

for all h > 0.

Proof 6.3.5.1 (Proof of Theorem 6.3.5). From Theorem 6.3.2, we obtain:

(elen0 , einc0 ) = (0, 0), (elenN , eincN ) = (0, 0)

with expectation E(elenj ) = E(eincj ) = 0.

For j = 1, . . . , N , since dlenj , dincj ∈ [−α, α], using Equation (6.5) and Hoeffding’s

inequality, we get:

P

(∣∣∣∣∣
j∑

ℓ=1

(
dincℓ − E[dincℓ ]

)∣∣∣∣∣ ≥ h

)
= P

(∣∣eincj − E[eincj ]
∣∣ ≥ h

)
≤ exp

(
− h2

2jα2

)
.

Thus, P(|elenj | ≥ h) ≤ exp
(
− h2

2jα2

)
and P(|eincj | ≥ h) ≤ exp

(
− h2

2jα2

)
for all h > 0.

This implies that a decrease in α tends to result in a smaller reconstruction error ej. As

noted in [71], the growth of j increases the likelihood of larger errors, as errors from pre-

vious reconstructions accumulate into subsequent ones through the inverse symbolization

process.
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6.3.3 ABBA to LLM

In this section, we define a single time series containing n data points as T , and let T =

{Ti}qi=1 represent a set of q time series, with the corresponding symbolic representation

set A = {Ai}qi=1.

Figure 6.3: The LLM-ABBA framework: Given an input time series, we first transform
and compress the time series into a symbolic series via steps 1○ and 1○. These symbolic
series are then tokenized using the LLM’s tokenizer 2○. The instruction containing the
symbolic series is also tokenized by the LLM’s tokenizer 2○. By fine-tuning the pretrained
LLM, the QLoRA with inhibition mechanism is applied in both 3○ and 3○. To implement
the corresponding tasks, 4○ and 5○ load the LLM according to the task type, while 4○
loads the LLM for generation tasks. For symbolic series inversion, 6○ and 5○ use ABBA
to decompress the generated symbolic series. Finally, in 7○ and 6○, the output time series
from LLM-ABBA is projected to generate forecasts.

Fixed-point Adaptive Polygonal Chain

In time series prediction settings, value-based prediction is converted into token-based

prediction using STSA. However, it is desirable to mitigate the negative effect of pre-

viously predicted symbols on subsequent time series recovery, as the recovery proceeds

from front to back. APCA and symbolic recovery often lead to cumulative errors in sym-

bolic prediction, meaning that an incorrect symbol from earlier in the sequence will affect

the reconstruction of subsequent symbols. To address this, a fixed-point polygonal chain

technique is introduced.

We partition the time series into segments following Equation (6.1), where pj =

(lenj, incj) is replaced with pj = (lenj, tij) before normalization. This new approxi-

mation method is called Fixed-point Adaptive Piecewise linear Continuous Approxima-

tion (FAPCA). The resulting tuples pi are normalized, and since incj = tij − tij−1
, they

can be recovered from each other. Figure 6.4 shows that FAPCA eliminates cumula-
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tive errors from earlier mistaken symbols, improving recovery. ABBA with APCA and

FAPCA generate symbols “aBbBbBbBbBbBbBbBA” and “abBbBbBbBbBbBbBbA”, re-

spectively, along with their respective perturbed symbols, “abbBbBbBbBbBbBbBA” and

“aBBbBbBbBbBbBbBbA”. Symbol recovery is performed on both the correct and per-

turbed symbols.
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Figure 6.4: A synthetic trigonometric sine series with 1,000 points is generated, and
symbolic approximation using 4 symbols is separately performed with APCA (the upper
panel) and FAPCA (the lower panel) on the time series.

Symbolizing Multiple Time Series

Existing symbolic approximation methods focus on converting a single time series. How-

ever, they are not designed to handle multiple time series with consistent symbolic in-

formation, where each symbol corresponds to a unique symbolic center. To manage co-

evolving or multiple time series, it is necessary to maintain consistent symbolic information

across different symbolic representations.

We propose a unified approach to achieve consistent symbolic approximation for mul-

tiple time series:

• Step 1: Use APCA or FAPCA to compress each time series Ti into Pi for i = 1, . . . , q.

• Step 2: Compute the normalized P s
i for each series and concatenate these to form

Ps := [P s
i ]

q
i=1.

• Step 3: Perform digitization on Ps.

• Step 4: Allocate symbols to each time series, where the number of symbols for Ti is

equal to |P s
i |.
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Symbolizing Out-of-Sample Data

To symbolize out-of-sample time series data with consistent symbols, which is essential

for downstream tasks like inference, we follow these steps:

• Step 1: Compress each time series T t
i into P t

i for i = 1, . . . , q′.

• Step 2: Assign a symbol to each p ∈ P t
i following the digitization rule.

Feeding the LLM

ABBA transforms numerical time series into symbolic series while preserving the inter-

nal logic chain that can be learned by LLMs. By ensuring the symbolic series inherits

the polygonal chain of the original time series and represents it via tokens, LLMs can

reconstruct the embedding space without requiring new tokens, by adapting fine-tuning

methods.

As shown in Figure 6.3, the left panel represents the traditional setup for tasks like clas-

sification, regression, and prediction, while the right panel corresponds to the instruction-

based setup. Instructions (the right panel) guide the LLMs to understand the tasks,

making it equivalent to the left panel (without LLMs’ instructions) in terms of task exe-

cution.

For the consistency of tuning-based methods, let T represent the input time series

dataset and A the symbolic representation generated by ABBA. The symbolization of

ABBA is denoted by ϕ : T → A, and its inverse symbolization is denoted by ϕ−1 : A → T .
We define the LLM-ABBA framework as follows:

1. A = ϕ(T ): The input T is converted to its symbolic representation A.

2. Minp = Tokenizer(Prompt,A): Tokenize the symbolic representation A using the

LLM’s default tokenizer.

3. Moutp = f∆
LLM(Minp): Feed the tokenized input into the LLM model.

4. Ŷ = Task(Moutp): Depending on the task type:Ŷ =Moutp, Classification task,

Ŷ = ϕ−1(Moutp), Regression / Prediction task

6.3.4 Linguistic Investigation: Zipf’s Law

In most corpora, the most frequent word appears approximately twice as often as the

second most frequent word; this phenomenon is described by Zipf’s law [218]. Zipf’s law
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asserts that the frequencies of certain events are inversely proportional to their rank, and

the rank-frequency distribution follows an inverse power law.

In Figure 6.5, we observe that the unigrams generated by ABBA symbolization from

seven different time series datasets from the UCR Archive roughly adhere to Zipf’s law.

This illustrates an interesting alignment between ABBA symbols and the distribution of

words in natural language.
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Figure 6.5: Frequency and rank of symbols in various UCR datasets.

6.4 Experiments

In this section, we explore three time series tasks to evaluate the effectiveness of ABBA

within LLM. Additionally, we fine-tune three language models on the training data using

QLoRA [211] with inhibition [219]. All experiments are conducted in PyTorch on a single

NVIDIA A100 40GB GPU. The advantages of LLM-ABBA include (1) eliminating the

need for LLMs to learn time series data from scratch, and (2) relying solely on compression

and decompression, without the need for training additional embedding layers [204]. For

a fair comparison, we evaluate all models under the same settings for each task. Unless

otherwise specified, we assume that greedy aggregation is used for the ABBA digitization.

A larger dataset requires more symbols or LLM tokens because it contains more infor-

mation and symbolic semantics. RoBERTa-Large, based on BERT [156], processes input

sentences bidirectionally, while Llama2-7B and Mistral-7B, which originate from the GPT

architecture [157], operate unidirectionally (from left to right). Causality analysis, com-

monly used to compute the context of multichannel EEG signals, is also applicable to

medical time series analysis. However, electrocardiogram (ECG) signals typically rely on

sequential features. Therefore, when using LLM-ABBA for medical time series analysis, it
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is crucial to first consider the properties and characteristics of the data. In some cases, we

were unable to reproduce or find SOTA performance numbers. For a comprehensive anal-

ysis, we test ABBA with LLMs on three core time series analysis tasks. Three LLMs are

used to process the COP in symbolic series: M1 (RoBERTaLarge) [160], M2 (Llama2-7B)

[220], and M3 (Mistral-7B) [221].

6.4.1 Hyperparameters

Hyperparameters of ABBA

There are four key parameters that govern the transition of time series when integrating

ABBA into LLMs. The tolerance parameter tol is selected from {1× 10−2, 1× 10−4, 1×
10−6} to control the degree of compression and dimensionality reduction. The digitization

parameter α is chosen from {1 × 10−2, 1 × 10−4, 1 × 10−6} to determine the number of

distinct symbols. L is a finite letter set that specifies the tokens used by LLMs, and

scl ∈ {1, 2, 3} is used as a normalized scaling factor for the length of each segment.

Hyperparameters of LLMs

Table 6.1: Hyperparameters of Classification tasks. Quant. is the model quantization
process. Inhib. is the inhibition threshold in QLoRA. Embed. means to save tuned
embeddings. Optims. is the optimization method. LR is the learning rate. Acc. is the
accyracy rate (%).

LLM-ABBA on Classification Tasks

Models
Quant.Tokens

Metric
LoRA

Optim. Epochs LR
Batch
Size4-bits Length alpha low rank rdropoutinhib.Embed.

RoBERTaLarge True 512 Acc. 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 5e-7 4
Llama2-7B True 4,096 Acc. 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 5e-7 4
Mistral-7B True 4,096 Acc. 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 5e-7 4

Table 6.2: Hyperparameters of Regression tasks. Quant. is the model quantization
process. Inhib. is the inhibition threshold in QLoRA. Embed. means to save tuned
embeddings. Optims. is the optimization method. RMSE is the root-mean-square-error.

LLM-ABBA on Regression Tasks

Models
Quant.Tokens

Metric
LoRA

Optim. Epochs LR
Batch
Size4-bit Length alpha low rank rdropoutinhib.Embed.

RoBERTaLarge True 512 RMSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2× 10−6 4
Llama2-7B True 4,096 RMSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2× 10−6 4
Mistral-7B True 4,096 RMSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2× 10−4 4

There are three time series analysis tasks: classification, regression, and prediction.

We quantize LLMs by 4-bits using the bitsandbytes package2. In order to fine-tune LLMs,

the shunting inhibition mechanism [219] is utilized during the QLoRA adapter fine-tuning

2https://github.com/bitsandbytes-foundation/bitsandbytes

https://github.com/bitsandbytes-foundation/bitsandbytes
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Table 6.3: Hyperparameters of Prediction tasks. Quant. is the model quantization pro-
cess. Inhib. is the inhibition threshold in QLoRA. Embed. means to save tuned embed-
dings. Optims. is the optimization method. MAE is the mean-absolute-error, and MSE
is the mean-square-error.

LLM-ABBA on Prediction Tasks

Models
Quant.Tokens

Metric
LoRA

Optim. Epochs LR
Batch
Size4-bit Length alpha low rank rdropoutinhib.Embed.

RoBERTaLarge True 512 MAE, MSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2× 10−6 4
Llama2-7B True 4,096 MAE, MSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2× 10−6 4
Mistral-7B True 4,096 MAE, MSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2× 10−6 4

progress. The modified embedding layer is also saved after fine-tuning on the correspond-

ing task. For the classification task, the metric is accuracy rate (%). Root-mean-square-

error is used as the metric for regression tasks. Mean-square-error and mean-absolute-

error are used as the metrics for prediction tasks, and we also visualize the correlation

coefficient of prediction tasks on ETTh1 data in terms of their seven features. We control

the fine-tuning epoch and apply a small batch size on every task. The alpha of QLoRA

is set to 16.

6.4.2 Compression and Recovery

To transform the numerical time series to symbolic time series, we use tokens of LLMs

as the initial dictionary of ABBA for the symbolic representation, and there are no extra

tokens that will be used to represent the numerical input. ABBA shows a strong symbolic

transition on time series signals (See Figure 6.6 and Table 6.4).

(a) Feaure 1. (b) Feaure 2. (c) Feaure 3. (d) Feaure 4.

(e) Feaure 5. (f) Feaure 6. (g) Feaure 7.

Figure 6.6: Visualization of reconstructed input-168-predict-24 results on ETTh1 data by
using ABBA symbolic approximation, where tol = 0.01, α = 0.01 and scl = 3.

To visualize the performance of ABBA on time series transition processes, we employ

ETTh1 time series data to compute the correlation coefficient and reconstruction error of
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ABBA. This multivariate data has seven features, and in terms of these seven features,

the average of Mean-Square Error (MSE), Mean Absolute Error (MAE), and correlation

coefficient between original time series input and reconstructed outputs is computed.

Table 6.4: Symbolic approximation performance on ETTh1 data using ABBA. ABBA
describes a time series sample by using symbolic approximation, and the number of used
symbols depdnds on the complexity of the data. If the time series sample is a regular
wave (for example, a sine wave), the number of used symbols is small; otherwise, ABBA
needs more symbols.

ABBA Settings
Number of
Symbols

Reconstructed Time Series

tol and α scl
Used LLM’s

tokens
MSE MAE

Correlation
Coefficient

1× 10−2, 1× 10−2 3 846 2.5× 10−7 1× 10−2 1.0
1× 10−4, 1× 10−4 3 2,713 4.2× 10−8 1.4× 10−4 1.0
1× 10−6, 1× 10−6 3 2,789 3.2× 10−8 1.3× 10−4 1.0

In this section, we observe which ABBA settings better suit time series characteristics.

The default scl is set to 3, which is used in other LLM tasks. tol and α are set to be the

same. Table 6.4 reports the input-168-predict-96 results when using ABBA to reconstruct

ETTh1 data in terms of seven features. Setting smaller tol and α in ABBA can reduce

the MSE and MAE scores, but more symbols or LLM tokens will be used. Under all

above conditions, the correlation coefficient is 1.0.

6.4.3 Time Series Classification Tasks

For the classification task, we evaluate these three pretrained LLMs on UCR Time Series

Archive datasets [222], EEG eye state [223], and MIT-BIH [224], [225] which have been

extensively adopted for benchmarking time series classification models. We utilize cross-

entropy loss for the classification training. Details of the implementation and datasets

can be found in Table 6.1. The evaluation metric is accuracy rate (%).

The UCR Archive contains 128 datasets already partitioned into train and test sets,

although the ratio of the train set and test set is not always consistent3. These datasets

have varying numbers of labels and feature dimensions. Also, there can be uneven numbers

of labels, which often results in overfitting. Therefore, classifying time series in the UCR

Archive is a challenging task. Table 6.5 reports the full time series classification results on

UCR2018. J1 refers to results of using k-means in the digitization process, and J2 refers

to the results of using greedy aggregation (Algorithm 2) in the digitization process. We

3The UCR Archive 2018 is available at https://www.cs.ucr.edu/~eamonn/time_series_data_

2018/.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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find that Algorithm 2 outperforms k-means symbolization time series transition progress

in most cases.

In Table 6.5, we report the classification performance on a partial dataset of UCR2018.

In most cases, although LLM-ABBA cannot outperform the SOTA in terms of time series

classification tasks, ABBA with LLMs can reach an acceptable application requirement in

some practical cases (such as “Coffee”, “Earthquakes”, “Herring”, “Strawberry”, “Trace”,

“Wafer”, “WormsTwoClass”). Compared to V2S [226] which is the SOTA, although these

three LLMs with the use of QLoRA occupies more memory, the multi-modality of LLMs,

especially on time series analysis tasks, achieves a noticeable improvement.

In the medical domain (for example, identifying the eye state using EEG signals, dis-

tinguishing abnormal ECG signals, and classifying the “normal beats”, “supraventricular

ectopy beats”, “ventricular ectopy beats”, “fusion beats”, and “unclassifiable beats” of

ECG signals), we report the performance of LLM-ABBA on three medical time series

datasets. We set tol = α = 0.01. In Table 6.6, compared to CNN [227] on the PTB-DB

data set, LLM-ABBA achieves performance almost equivalent to the SOTA. In the as-

pect of distinguishing MIT-BIH, CNN [227] and Bidirectional Recurrent Neural Networks

(BiRNN) [224], [228] performs the best, but LLM-ABBA slightly outperforms LSTM

[229], [230].

6.4.4 Time Series Regression Tasks

For the regression task, we evaluate these three pretrained LLMs on the TSER bench-

marking archive [200], which contains 19 time series datasets from 5 application domains,

including Health Monitoring, Energy Monitoring, Environment Monitoring, Sentiment

Analysis, and Forecasting4. To use as few symbols as possible, we initialize the setting of

tol = 0.01 and α = 0.01. We also utilize the L2 loss for the regression training. Details

of the implementation and datasets can be found in Table 6.2. The evaluation metric is

RMSE.

Experimenting on the TSER benchmark archive [200], the empirical results are shown

in Table 6.7, in which for 15 out of 19 use-cases, LLM-ABBA outperforms the machine

learning SOTA results. We believe that LLM-ABBA can exploit the semantic information

hiding beneath the time series in the task of time series regression. ABBA is able to

provide COPs to LLMs by compressing and digitizing time series to symbols, which

finally results in the change of embedding space by using adaption fine-tuning methods.
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(a) Feature 1. (b) Feature 2. (c) Feature 3. (d) Feature 4.

(e) Feature 5. (f) Feature 6. (g) Feature 7.

Figure 6.7: Visualization of input-168-predict-24 results on ETTh1 using LLM-ABBA.

6.4.5 Time Series Forecasting Tasks

For time series forecasting, we experimented on 4 well-established benchmarks: ETT

datasets (including 4 subsets: ETTh1, ETTh2, ETTm1, ETTm2) [231], [232]. Details

of the implementation and datasets can be found in Table 6.3. The input length of the

time series is 168, and we use three different prediction horizons H ∈ {24, 96, 168}. The

evaluation metrics include MSE and MAE.

Although LLM-ABBA cannot obtain a new SOTA on time series forecasting tasks,

it compares favorably to the Informer architecture which is trained from scratch. The

congenital defect of ABBA is that the symbolization tends to be affected by the fluctuation

and oscillation of time series signals, which eventually leads to higher MSE and MAE

scores. Because LLM-ABBA utilizes a totally different technical roadmap to existing

methods, it only remolds the construction of the LLM’s tokens. However, remodeling

pretrained tokens inevitably brings the previous pretrained semantics to the LLM-ABBA

design. Thus, we discussed the semantic consistency of LLM-ABBA using extra symbols

or tokens to overcome this problem.

6.4.6 QLoRA Fine-Tuning

Because the low rank of adapter fine-tuning will influence the efficiency of passing infor-

mation [211], [219] from the previous layer, we use different low rank settings of QLoRA

on the corresponding tasks during the fine-tuning progress. But for time series regression

and prediction tasks, we select r ∈ {16, 46, 256} for the corresponding data input. We

4Monash regression data is available at http://tseregression.org/.

http://tseregression.org/
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find that there is no obvious over-fitting problem, and more tunable parameters are not

able to improve the performance of LLM-ABBA.

In medical time series domains, ptb-db and MIT-BIH arrhythmia data sets are mostly

used. EEG eye state data set has two categories,and because of its high complexity, the

accuracy always stays at around 60%. EEG eye state data and MIT-BIH has more than

one channel, which indicates that LLM-ABBA might have the ability to process compli-

cate features across channels. Table 6.6 presents the full medical time series classification

results using LLM-ABBA.

LLM-ABBA achieves comparable time series prediction results to the SOTAs, and

there is no over-fitting in these tasks when using different low rank r. Because ABBA

tends to symbolize trends and altitudes of the time series signals, LLM-ABBA always

strengthens the vibration of predicted time series segments which can be seen in Figure

6.7.

6.4.7 Semantic consistency

When using pretrained tokens as the input symbols, fine-tuning on no language content

(such as time series signals) will generally bring semantic loss to LLMs. Therefore, we

use ASCII codes to generate new symbols by adding more digits and expanding the used

alphabet table. Following the same fine-tuning process to the above experiment settings,

we compute the forecasting performance by fine-tuning on Mistral-7B. Compared to Table

6.8, Table 6.9 shows that the difference is not noticeable.

6.5 Limitations

ABBA is evaluated through performance profiles based on its reconstruction, assessed

using the 2-norm, Dynamic Time Warping (DTW), and their respective differenced mea-

sures. These evaluations show that ABBA performs competitively against SOTA meth-

ods, such as SAX. Previous STSA methods have been applied in various data mining

applications, including EEG signal analysis [233] and the Internet of Things [234]. Addi-

tionally, ABBA demonstrates improved performance in anomaly detection tasks, such as

TARZAN, by replacing SAX methods [71], [72].

LLMs are capable of understanding the generated symbols from ABBA. Each data

sample is represented by symbols, with each symbol having a specific meaning that cor-

responds to a node in the internal COP of the time series data. LLM-ABBA excels not

only in time series classification tasks but also in time series regression tasks (as shown in

Table 6.5 and Table 6.7). Since these symbolic series follow a logical chain that reflects

the trends in time series data, LLMs can learn the temporal patterns through adapter
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fine-tuning methods. As illustrated in Figure 6.7, by applying the inverse symboliza-

tion process of ABBA, LLMs are able to predict time series trends with reduced drift in

the forecasted segments. Therefore, time series forecasting tasks can also benefit from

these findings. While ABBA effectively approximates time series through symbolic series,

LLMs are prone to hallucinations, meaning that generating more content could lead to

more “hallucinated” knowledge. As a result, LLM-ABBA tends to perform better on

short-term time series prediction and regression tasks.

Our proposed FAPCA strategy for ABBA does not completely eliminate the potential

for cumulative errors arising from incorrect symbols during recovery. A minor shift can

occur if an incorrect leni leads to improper symbol replacements. Furthermore, hallu-

cination, which is an inherent issue with LLMs, is not fully addressed in this work. As

a result, the vibration or adverse response of predicted sequences can negatively impact

performance. Moreover, after using ABBA to transform time series data, most LLMs

can only handle up to 4,096 tokens, which limits their capacity for long-term time series

analysis.

6.6 Conclusion

In this paper, we introduce LLM-ABBA for time series classification, regression, and

forecasting tasks. We discuss the seamless integration of time series symbolization with

LLMs and highlight how this integration enhances performance. Theoretically, we analyze

the reconstruction error of ABBA symbolization, its relationship with key parameters,

and the inherent limitations of LLM-ABBA. To address the drift phenomenon in time

series, we propose the FAPCA method, which improves ABBA symbolization. Empirical

results demonstrate that our method achieves performance comparable to the SOTA in

classification and regression tasks. In terms of convenience and universality, LLM-ABBA

enhances the multi-modality of LLMs for time series analysis. We believe the potential of

ABBA extends to other time series applications, which will be explored in future work.
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Table 6.5: Full comparison of results for time series classification tasks(%) on UCR
datasets.

Data
Classes Symbols RoBERTaLarge Llama2-7B Mistreal-7B V2Sa [226]
Number Number Para. J1 J2 Para. J1 J2 Para. J1 J2 Para. SOTA

BME 3 836 2.65M 34.0 60.2 12.7M 41.3 84.7 9.56M 43.3 77.3 0.3M -
BeetleFly 2 731 2.65M 65.0 95.0 12.7M 50.0 65.0 9.56M 55.0 75.0 0.3M -
BirdChicken 2 424 2.65M 55.0 70.0 12.7M 60.0 65.0 9.56M 55.0 75.0 0.3M -
ChinaTown 2 585 2.65M 72.0 72.6 12.7M 58.3 84.3 9.56M 61.5 89.2 0.3M -
Coffee 2 701 2.65M 50.0 89.3 12.7M 60.7 96.5 9.56M 78.6 89.3 0.3M 100
DistalPhalanxOutlineAgeGroup 3 1,444 2.65M 68.3 68.3 12.7M 71.2 73.4 9.56M 67.6 74.8 0.3M -
DodgerLoopWeekend 2 143 2.65M 72.6 73.9 12.7M 70.3 64.5 9.56M 69.6 71.7 0.3M -
ECG200 2 1,781 2.65M 70.0 68.0 12.7M 63.0 64.0 9.56M 66.8 68.0 0.3M 87.4
ECG5000 5 10,334 2.65M 81.2 76.0 12.7M 75.7 74.7 9.56M 75.4 73.4 0.3M 94.0
ECGFiveDays 2 2,463 2.65M 52.6 56.9 12.7M 53.3 63.9 9.56M 49.5 68.8 0.3M -
Earthquakes 2 940 2.65M 52.7 74.8 12.7M 77.7 76.3 9.56M 79.1 76.3 0.3M 78.4
FordA 2 9,759 2.65M 68.9 68.9 12.7M 58.7 61.1 9.56M 62.7 60.9 0.3M 100
FordB 2 9,352 2.65M 68.9 58.1 12.7M 56.1 58.9 9.56M 55.1 57.0 0.3M 100
FreezerRegularTrain 2 2,663 2.65M 61.9 74.5 12.7M 64.1 76.1 9.56M 63.2 75.4 0.3M -
FreezerSmallTrain 2 2,593 2.65M 62.3 74.1 12.7M 63.8 67.8 9.56M 63.3 67.5 0.3M -
GunPoint 2 791 2.65M 51.4 73.3 12.7M 54.0 82.7 9.56M 48.0 80.0 0.3M 96.7
GunPointAgeSpan 2 2,057 2.65M 83.5 94.3 12.7M 69.9 84.5 9.56M 67.1 85.5 0.3M -
GunPointMaleVersusFemale 2 2,057 2.65M 57.9 76.3 12.7M 59.8 71.2 9.56M 55.7 74.1 0.3M -
GunPointOldVersusYoung 2 2,057 2.65M 66.7 97.5 12.7M 62.9 85.1 9.56M 67.9 80.0 0.3M -
HandOutlines 2 7,572 2.65M 66.5 77.0 12.7M 63.5 68.6 9.56M 65.1 71.6 0.3M 93.2
Herring 2 982 2.65M 59.4 65.6 12.7M 62.5 62.5 9.56M 54.7 60.9 0.3M 68.8
HouseTwenty 2 1,385 2.65M 50.8 67.1 12.7M 69.7 89.1 9.56M 75.6 93.3 0.3M -
ItalyPowerDemand 2 1,759 2.65M 59.7 70.4 12.7M 55.7 73.4 9.56M 53.4 73.2 0.3M 97.1
Lightning2 2 2,175 2.65M 67.2 65.6 12.7M 68.9 65.6 9.56M 67.2 62.3 0.3M 100
Meat 3 161 2.65M 55.0 70.0 12.7M 68.3 70.0 9.56M 66.7 70.0 0.3M -
MelbournePedestrian 10 1,081 2.65M 34.6 68.5 12.7M 27.1 76.8 9.56M 29.2 74.4 0.3M -
MiddlePhalanxOutlineCorrect 2 1,700 2.65M 59.8 67.4 12.7M 58.1 69.8 9.56M 61.2 67.7 0.3M 91.1
MiddlePhalanxTW 6 1345 2.65M 53.9 54.5 12.7M 53.9 48.7 9.56M 51.9 46.8 0.3M 84.9
OliveOil 4 150 2.65M 66.7 46.7 12.7M 76.7 70.0 9.56M 73.3 73.3 0.3M -
PhalangesOutlinesCorrect 2 2,785 2.65M 62.2 65.4 12.7M 63.9 67.5 9.56M 62.7 67.5 0.3M -
Plane 7 1,424 2.65M 33.3 81.0 12.7M 39.0 78.1 9.56M 38.1 83.8 0.3M
PowerCons 2 2,007 2.65M 77.8 79.0 12.7M 72.8 81.1 9.56M 77.8 80.6 0.3M -
ProximalPhalanxOutlineCorrect 2 1,298 2.65M 71.5 82.8 12.7M 73.9 85.6 9.56M 72.9 83.9 0.3M -
ProximalPhalanxTW 6 1,101 2.65M 67.8 80.0 12.7M 69.8 80.0 9.56M 68.8 74.1 0.3M -
SemgHandGenderCh2 4 2,840 2.65M 49.1 54.7 12.7M 59.5 67.2 9.56M 58.3 73.3 0.3M -
SmallKitchenAppliances 2 2,207 2.65M 66.2 69.3 12.7M 60.8 63.2 9.56M 57.6 61.6 0.3M 83.5
SonyAIBORobotSurface1 2 2,558 2.65M 54.2 60.4 12.7M 64.1 71.7 9.56M 68.2 78.5 0.3M -
StarLightCurves 3 27,131 2.65M 67.8 72.9 12.7M 68.6 72.6 9.56M 67.6 70.1 0.3M -
Strawberry 2 3,593 2.65M 71.2 85.1 12.7M 69.5 84.9 9.56M 69.5 88.4 0.3M 97.6
ToeSegmentation2 2 2,714 2.65M 79.7 73.1 12.7M 69.2 59.2 9.56M 77.7 80.0 0.3M -
Trace 4 870 2.65M 49.5 88.0 12.7M 54.0 90.0 9.56M 47.0 77.0 0.3M 100
TwoLeadECG 2 2,487 2.65M 59.6 69.1 12.7M 53.2 64.6 9.56M 53.2 63.9 0.3M 97.8
Wafer 2 4,805 2.65M 94.6 96.8 12.7M 91.3 93.5 9.56M 90.9 95.2 0.3M 100
Wine 2 171 2.65M 53.6 57.4 12.7M 59.3 63.0 9.56M 63.0 55.6 0.3M 90.7
Worms 5 5,377 2.65M 62.6 67.5 12.7M 57.1 64.9 9.56M 54.5 63.6 0.3M 83.1
WormsTwoClass 2 5377 2.65M 74.3 81.8 12.7M 62.3 70.1 9.56M 61.0 79.2 0.3M 98.7

Table 6.6: Full comparison of results on medical time series classification tasks(%) on
EEG eye states, ptb-db, and MIT-BIH.

Data
Classes Symbols RoBERTaLarge Llama2-7B Mistreal-7B CNN

[227]
BiRNN
[228]

LSTM
[230]Number Number r=16 r=64 r=256 r=16 r=64 r=256 r=16 r=64 r=256

EEG 2 938 60.1 66.0 64.4 55.9 57.4 57.5 58.5 58.0 60.1 53.1 55.3 50.7
ptb-db 2 2,179 89.5 90.6 89.3 99.0 98.6 98.3 98.9 98.7 98.6 99.4 97.0 90.7
mit-bih 5 2,926 86.4 86.4 86.3 89.6 89.4 89.1 89.3 89.7 89.3 93.4 96.5 88.1
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Table 6.7: Full comparison of results on the regression task on 19 Monash Time Series
Regression datasets.

Data Symbols
RoBERTaLarge Llama2-7B Mistreal-7B SOTA

[200]r=16 r=64 r=256 r=16 r=64 r=256 r=16 r=64 r=256
Number RMSERMSERMSERMSERMSERMSERMSERMSERMSE RMSE

AppliancesEnergy 778 1.73 2.09 1.74 2.43 2.43 2.43 2.34 2.02 2.11 2.29
HouseholdPowerConsumption1 1717 377.02 377.20 377.20 398.01 398.05 398.05 228.83 228.78 228.67132.80
HouseholdPowerConsumption2 1717 27.64 27.71 27.73 36.63 36.71 36.69 24.54 24.56 24.51 32.61
BenzeneConcentration 3037 4.01 4.00 4.00 5.57 5.56 5.56 4.03 4.03 4.03 0.64
BeijingPM10Quality 970 66.16 66.07 66.07 93.25 93.26 93.26 65.25 65.25 65.24 93.14
BeijingPM25Quality 970 54.16 54.16 54.16 76.75 76.73 76.73 53.50 53.49 53.49 59.50
LiveFuelMoistureContent 5689 20.56 20.56 20.56 29.32 29.33 29.32 20.94 20.88 20.85 29.41
FloodModeling1 969 0.00 0.00 0.00 0.05 0.05 0.05 0.37 0.36 0.36 0.00
FloodModeling2 979 0.00 0.00 0.00 0.05 0.04 0.04 0.40 0.39 0.39 0.01
FloodModeling3 948 0.00 0.00 0.00 0.06 0.05 0.05 0.41 0.37 0.39 0.00
AustraliaRainfall 4740 4.36 4.36 4.36 6.05 6.01 6.02 4.31 4.28 4.30 8.12
PPGDalia 12298 9.32 9.32 9.32 12.54 12.50 12.52 9.04 9.02 9.03 9.92
IEEEPPG 8971 17.06 17.00 17.04 22.59 22.53 22.55 17.15 17.12 17.16 23.90
BIDMC32HR 9423 6.73 6.98 6.71 12.02 11.98 12.04 8.24 8.21 8.23 9.42
BIDMC32RR 9412 1.77 1.74 1.76 2.64 2.61 2.62 2.09 2.06 2.08 3.02
BIDMC32SpO2 5537 2.90 2.85 2.89 3.82 3.79 3.81 2.95 2.91 2.93 4.45
NewsHeadlineSentiment 5537 0.07 0.07 0.07 0.13 0.13 0.13 0.11 0.11 0.11 0.14
NewsTitleSentiment 5537 0.07 0.07 0.07 0.13 0.13 0.13 0.11 0.11 0.11 0.14
Covid3Month 227 0.02 0.02 0.02 0.11 0.11 0.11 0.45 0.44 0.44 0.04

Table 6.8: Full comparison of results for the prediction task on 4 time series prediction
datasets.

Data PredictorSymbols
Llama2-7B Mistreal-7B Informer

[200]
Time-LLM

[204]
TimeMixer

[67]r=16 r=64 r=256 r=16 r=64 r=256
Length Number MSEMAEMSEMAEMSEMAEMSEMAEMSEMAE MSE MAEMSEMAEMSE MAE MSE MAE

ETTh1 168/24 2,789 0.689 0.653 0.647 0.696 0.658 0.677 0.631 0.681 0.622 0.631 0.626 0.677 0.577 0.549 - - - -
ETTh2 168/24 5,383 0.798 0.788 0.784 0.761 0.789 0.772 0.776 0.787 0.759 0.761 0.762 0.771 0.720 0.665 - - - -
ETTm1 168/24 3,170 0.403 0.397 0.386 0.364 0.392 0.385 0.457 0.422 0.401 0.387 0.407 0.397 0.323 0.369 - - - -
ETTm2 168/24 6,878 0.224 0.209 0.201 0.198 0.215 0.207 0.251 0.237 0.214 0.203 0.218 0.209 - - - - - -
ETTh1 168/96 2,789 0.762 0.786 0.754 0.752 0.759 0. 60 0.792 0.804 0.773 0.782 0.7811 0.788 - - 0.362 0.392 0.375 0.440
ETTh2 168/96 5,383 0.912 0.885 0.892 0.881 0.907 0.876 0.899 0.887 0.871 0.866 0.878 0.872 - - 0.268 0.328 0.289 0.341
ETTm1 168/96 3,170 0.542 0.537 0.531 0.528 0.538 0.520 0.541 0.533 0.524 0.517 0.529 0.520 - - 0.272 0.233 0.320 0.357
ETTm2 168/96 6,878 0.302 0.286 0.288 0.267 0.293 0.278 0.289 0.302 0.276 0.281 0.280 0.285 - - 0.161 0.253 0.175 0.258
ETTh1 168/168 2789 1.161 1.010 1.087 0.964 1.096 0.989 1.182 1.217 1.174 1.968 1.179 1.992 0.931 0.752 0.398 0.418 0.429 0.421
ETTh2 168/168 5,383 4.103 2.675 3.975 2.101 4.086 2.537 4.092 2.626 3.898 2.134 3.910 2.245 3.489 1.515 0.329 0.375 0.372 0.392
ETTm1 168/168 3,170 0.989 0.962 0.974 0.952 0.979 0.959 1.001 0.986 0.966 0.958 0.972 0.966 0.678 0.614 0.310 0.358 0.361 0.381
ETTm2 168/168 6,878 0.616 0.583 0.576 0.544 0.580 0.561 0.592 0.541 0.521 0.503 0.532 0.509 - - 0.219 0.293 0.237 0.299

Table 6.9: The performance of LLM-ABBA with extra new tokens (symbolic ASCII codes)
on ETTh1 data in terms of time series forecasting tasks.

Data Predictor Symbols
Mistreal-7B

r=16 r=64 r=256
Length Number MSEMAEMSEMAEMSEMAE

ETTh1 168/24 2,789 0.636 0.692 0.626 0.632 0.629 0.681
ETTh2 168/24 5,383 0.779 0.788 0.761 0.763 0.763 0.777
ETTm1 168/24 3,170 0.457 0.402 0.402 0.387 0.407 0.399
ETTm2 168/24 6,878 0.253 0.238 0.215 0.203 0.219 0.209



Chapter 7

Conclusion

7.1 Summary

Depression is a complex, multisymptomatic, and highly recrudescent mental disease.

Severity detection and psychotherapy have only been stated to be explored. In this

work, we answered the big questions about scoring depressive severity and how to provide

universal psychotherapy to depressive patients. In Chapter 2, we found that increased

delta deactivation accompanied by strong beta activation is the main feature of depression

as the severity of depression increases. We also verified that ANN models using EEGs

can detect depression and score the severity of depression. In Chapter 3, we observed

that the bilateral PFC plays a central role in various cognitive processes. For instance,

it is involved in rehearsal activities prior to object recognition to aid classification. Ad-

ditionally, the PFC facilitates inhibition to sustain positive memories and activities. It

also supports disinhibition, which serves to stimulate or activate subsequent interactions

within the brain. Meanwhile, the right PFC sometimes could assist left PFC to implement

high capacity WM tasks. By contrast, the posterior regions, PPC, tends to be engaged

in attention arousing and maintaining. These two findings suggest that a) the recurrent

maintenance circuit may keep the brain performing positive cognitive components, b) then

the instantaneous monitoring inhibition would pause the deadlocked sustenance function

to save energy, and c) the arrival of disinhibition arouses the next step in the brain to

select a new subject or focus on novel subjects. In Chapter 4, we addressed how pre-

trained language models can enhance their performance on fine-tuning downstream tasks

by modifying the attention block in Transformers. Additionally, we provided further evi-

dence highlighting the importance of the inhibited gate mechanism in MLPs for effectively

fine-tuning language downstream tasks. In Chapter 5, we observed that pretrained LLMs

fine-tuned on Psychotherapy Assistant Instructions outperformed SOTA LLM response

baselines. Our Assistant-Instruction approach introduces a semi-annotation method to

112
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effectively align pretrained LLMs with instructional tasks. We also released a compre-

hensive synthetic dataset to support future research on professional instruction tuning

tasks. In Chapter 6, we introduced ABBA-to-LLMs, a method that preserves the internal

pattern structure of time series signals by transforming them into symbolic series that

encapsulate the specific patterns of the original time series data. This method enables

LLMs to interpret and analyze time series signals effectively. Finally, the methods and

systems discussed form a closed-loop framework that integrates EEG signals with natural

language processing.

7.2 Contributions and Achievements

The scientific contributions of this thesis are represented by the following achievements:

1. In Chapter 2, we investigated the neurophysiological differences between severe de-

pression patients and healthy controls during working memory tasks, revealing a

pronounced increase in central-parietal delta deactivation accompanied by strong

beta activation in the depression group. Building on these findings, we proposed

detection models based on specific EEG frequency bands and brain regions to clas-

sify depression and assess its severity. These models utilized scoring labels from two

professional psychologists for validation, and the results were published in IEEE

Transactions on Neural Systems and Rehabilitation Engineering. These findings

were published on IEEE Transactions on Neural Systems and Rehabilitation Engi-

neering (IF: 4.9, WOS citations: 3). The code and data of this project are available

at https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI.

2. In Chapter 3, we investigatedWM brain networks using phase-lock coherence and di-

rectional coherence analyses. Adaptive fitting of 64-channel EEG data yielded four

sources to simulate internal cerebral communications. Based on region-to-region

connectivity, we proposed a “neurocognitive architecture” for WM, identifying path-

ways involved in memory maintenance and lateral inhibition. This methodology also

demonstrates potential applications in depression detection and the visualization of

abnormal brain activity. We published these findings on IEEE Transactions on

Neural Systems and Rehabilitation Engineering (IF: 4.9, WOS citations: 15). The

code and data of this project are available at https://github.com/ChengKang520/

Classifying-and-Scoring-MDD-BCI.

3. In Chapter 4, we introduced a fine-tuning adaptation method, InA, designed to effec-

tively suppress irrelevant information during fine-tuning on downstream tasks. InA

https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI
https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI
https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI
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enhances the model’s focus on task-specific information by subtracting a thresh-

old to eliminate the influence of extraneous knowledge. This approach is partic-

ularly applicable to fine-tuning models on professional psychotherapy data. We

have published this method to Neural Networks (IF: 7.8, WOS citations: 1). The

code and data of this project are available at https://github.com/ChengKang520/

inhibited-lora.

4. In Chapter 5, we introduced psychotherapy data refined by GPT-4, enhancing

LLMs’ comprehension of specialized professional knowledge and enabling them to

generate content closely aligned with GPT-4 outputs. This chapter demonstrated

the effectiveness of GPT-4-revised data for instruction-tuning LLMs, offering valu-

able insights for developing general-purpose, instruction-following agents powered

by LLMs such as GPT-4. Additionally, this methodology is applicable to EHR tasks.

The corresponding benchmark has been published at The 49th IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP) Workshop 2024

(Web of Science citations: 1). The code and data of this project are available at

https://github.com/ChengKang520/psychotherapy-assistant_instruction/tree/

main/Psych_BioGPT.

5. In Chapter 6, we introduced a time-series compression method designed to en-

hance the multimodal capabilities of LLMs for time-series analysis tasks. This

tool improved LLMs’ ability to process time-series signals by leveraging the ABBA

method for instruction-tuning. The results demonstrated that LLMs can effec-

tively interpret the internal chain-of-patterns inherent in time-series data. Fur-

thermore, this approach has potential applications in integrating EEG signals with

LLMs. The proposed method has been submitted to IEEE Transactions on Signal

Processing. The code and data of this project are available available at https:

//github.com/inEXASCALE/llm-abba.

7.3 Future Work

In my future work, there are five main directions as follows.

• the development of a comprehensive toolbox capable of visualizing abnormal brain

networks across various experimental paradigms;

• expanding the clinical data pool, optimizing models based on expert feedback, and

enhancing the adaptability and deployability of large language models in psychother-

apy, with a particular focus on depression intervention and adjunctive treatments;

https://github.com/ChengKang520/inhibited-lora
https://github.com/ChengKang520/inhibited-lora
https://github.com/ChengKang520/psychotherapy-assistant_instruction/tree/main/Psych_BioGPT
https://github.com/ChengKang520/psychotherapy-assistant_instruction/tree/main/Psych_BioGPT
https://github.com/inEXASCALE/llm-abba
https://github.com/inEXASCALE/llm-abba
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• A valuable future direction is the practical application of the proposed psychother-

apy chatbot to depression patients, enhancing the thesis’s comprehensiveness by

including real-world examples. This could involve showcasing how the chatbot sup-

ports depression management, aligning with the initial focus of the thesis. In addi-

tion, evaluating the performance of the chatbot would be essential, including com-

parative studies against existing tools to assess its efficacy in treating depression

and providing therapeutic support;

• to enhance the performance of the psychotherapy-aiding chatbot across additional

domains, such as auxiliary diagnosis, treatment recommendation support, and emo-

tion monitoring through diary analysis.
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