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Abstract

The detection of Major Depressive Disorder (MDD) has benefited from advanced neuro-
computing methods and traditional machine learning techniques. In addition, new tech-
nical tools have been trying to relieve patients’ suffering. In general, studies about the
detecting rate of depression are mostly too low to be transferred to clinical applications,
and techniques about psychological therapies or assistance are heavily relying on specific
places and times. In this thesis, I describe the results of three projects that address chal-
lenges to making the depression detection rate more stable with a higher accuracy rate
and making an available psychotherapy chatbot without pretraining on huge language
datasets but with a stronger performance. In the second chapter, I and my co-authors
developed a Brain-Computer Interface (BCI) system for processing electroencephalogram
(EEG) signals and constructing the dynamic functional brain networks between depres-
sive patients and healthy controls. Meanwhile, two residual neural networks based on
selected EEG channels and frequencies were used to detect depression from the health
and to evaluate the depressive severity with the score of Structured Clinical Interview for
DSM-IV Axis I Disorders, Clinician Version (SCID-CV). In the third chapter, I and my
co-authors proposed a novel Fuzzy Window with the Gaussian Processed Labels (FW-
GPL) method for ordinal scoring tasks. With the use of window process, this model has
the advantage to process ordinal data, such as, medical images and EEGs of patients
with different depressive severity. In the forth chapter, to develop advanced training or
fine-tuning methods based on neuroscience knowledge, I and my co-authors studied the
brain functional dynamics during Working Memory (WM), and we found maintenance,
inhibition and disinhibition should work together to process the information in our brain.
Depends on these findings in chapter three, we proposed a neuroscience-inspired architec-
ture model, shunting inhibition in chapter four, and the results of this new architecture
on fine-tuning downstream language tasks prove the effectiveness of gating Multilayer
Perceptions (MLPs) and inhibition mechanisms. In the fifth project, I and my co-authors
developed a psychotherapy chatbot fine-tuned on Large Language Models (LLMs) pro-
cessed AlexanderStreet therapy and counseling data, and it provided more professional
and common used psychotherapy knowledge. Aside from contributing scientific conclu-
sions about each system, these methods will also serve as a practical framework for future
efforts to address challenges to depression detection and psychotherapy aid.

Keywords: Depression detection, depressive severity scoring, brain computer interface,
ordinal scoring tasks, parameter efficient fine tuning, large language models, psychother-
apy chatbot.
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Abstrakt

Dizertačńı práce se zaměřuje na detekci deprese s využit́ım pokročilých neurovědeckých
výpočetńıch metod a tradičńıch technik strojového učeńı. Většina studíı zaměřená na
detekci deprese dosahuje př́ılǐs ńızké přesnosti pro nasazeńı v klinické praxi a metody v
oblasti psychologické terapie nebo asistence jsou značně závislé na specifických mı́stech
a časech. V této disertačńı práci prezentuji výsledky experiment̊u, které se zaměřuj́ı na
zvýšeńı přesnosti detekce deprese a na vývoj př́ıstupného psychoterapeutického chatbota,
který nevyžaduje předchoźı trénink na rozsáhlých jazykových datech. Ve druhé kapi-
tole jsem vyvinul systém pro analýzu signál̊u elektroencefalogramu (EEG). Byly použity
dvě reziduálńı neuronové śıtě, jejich vstupem byly specifické EEG kanály a frekvenčńı
spektrum signálu. Hodnoceńı závažnosti deprese bylo provedeno pomoćı metodiky Struc-
tured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-CV). Ve
třet́ı kapitole jsem navrhl inovativńı metodu Fuzzy Window with Gaussian Processed La-
bels (FW-GPL) pro ordinálńı skórovaćı úlohy. Dı́ky procesu oken tento model efektivně
zpracovává např. lékařské sńımky a EEG signály. Ve čtvrté kapitole jsem se zaměřil
na zkoumáńı funkčńı dynamiky mozku během operaćı v pracovńı paměti (WM) a zjistil
jsem, že procesy udržováńı, inhibice a disinhibice vyv́ıjej́ı součinnost při zpracováńı infor-
maćı v mozku. Ve čtvrté kapitole jsem navrhl neurovědami inspirovaný architektonický
model založený na inhibici, jehož výsledky v jemném doladěńı jazykových úloh dokazuj́ı
zvýšeńı přesnosti odpověd́ı jazykových model̊u. V páté kapitole jsem vyvinul psychoter-
apeutického chatbota, který byl optimalizován na datech z AlexanderStreet knihovny.
Předložené metody budou sloužit jako praktický rámec pro budoućı snahy řešit výzvy v
detekci deprese a v následné podpoře v psychoterapii.

Kĺıčová Slova: Detekce deprese, skórováńı závažnosti deprese, mozkové poč́ıtačové
rozhrańı, ordinálńı skórovaćı úlohy, parametricky efektivńı jemné laděńı, velké jazykové
modely, psychoterapeutický chatbot.
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Chapter 1

Introduction

The introduction first describes goals of this thesis, and depression as well as its common

symptoms. Then traditional diagnosis and therapy ways are presented. In the second,

more stable depression detection techniques are presented. Following the above, the

introduction also describes one challenge when detecting depressive severity, which could

seriously influence the detection and scoring results. To provide convenient and accessible

tools which contains professional psychotherapy knowledge at any time to remind users,

we firstly present one advanced Parameter-Efficient Tuning Method (PEFT) which was

inspired by inhibition mechanism in our brain. Secondly, a short introduction to Nature

Language Processing (NLP) on psychotherapy chatbot using LLMs is given with a more

detailed summary in the following chapters. Lastly, a brief description of the goals and

the thesis outline is given.

1.1 Goals of the Thesis

As shown in Figure 1.1, this thesis aims to develop a system that can detect depres-

sive severity using brain computer interface and provide psychotherapy assistant using

language models. Considering clinical knowledge of depression detection, and applying

widely-used advanced Artificial Neural Networks (ANNs), this system can achieve an ac-

ceptable result in detecting depression and scoring depressive severity (in Chapter 2).

After the detection and severity scoring procedure, more stable and advanced algorithms,

such as fuzzy windows and Gaussian processed labels are proposed to improve the per-

formance of detecting ordinal samples (in Chapter 3). Next, inspired by the inhibition

and disinhibition brain networks (in Chapter 4) a better fine-tuning method that tunes

pretrained language models - inhibited gate MLPs - was designed to improve the per-

formance on specific downstream tasks (in Chapter 5). Finally, the psychotherapy data

which was revised and augmented by GPT-4 can teach other LLMs to generate an effi-

1
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cient and reliable response (in Chapter 6). The primary objectives of this thesis can be

categorized into:

� to analyze the abnormal brain connections using brain computer interface.

� to detect depressive severity using brain computer interface and automatic diagnosis

system.

� to develop a better ordinal regression model, and then, to improve the detecting

rate of depressive severity, aw well as other ordinal datasets.

� to develop a better fine-tuning method to tune the pre-trained large language models

on professional knowledge.

� to develop a psychotherapy chatbot that can provide professional assistant to clients

using large language models.

Figure 1.1: The whole framework of depression detection and assistance in this thesis.

1.2 Background

Depression also called MDD is a common illness worldwide, as reported by World Health

Organization (WHO), with an estimated 3.8% of the population affected, including 5.0%
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among adults and 5.7% among adults older than 60 years, and there are approximately

280 million people in the world have depression [10]. Depression is different from usual

mood fluctuations and short-lived emotional responses to challenges in everyday life. Es-

pecially when recurrent and with moderate or severe intensity, depression may become

a serious health condition. It can cause the affected person to suffer greatly and func-

tion poorly at work, at school and in the family. At its worst, depression can lead to

suicide. Over 700 000 people die due to suicide every year. Suicide is the fourth leading

cause of death in 15-29-year-olds. Although there are known, effective treatments for

mental disorders, more than 75% of people in low- and middle-income countries receive

no treatment [11]. Barriers to effective care include a lack of resources, lack of trained

healthcare providers and social stigma associated with mental disorders. In countries of

all income levels, people who experience depression are often not correctly diagnosed, and

others who do not have the disorder are too often misdiagnosed and prescribed antide-

pressants. MDD is a mental illness which is often accompanied by a high risk of suicidal

thoughts [12]. Depressed individuals are often misdiagnosed by physicians, which leads to

a range of problems, including self-medication, substance abuse, inappropriate treatment,

social isolation, and impaired performance in education or at work [13], [14]. Cognitive

behavioural therapy is the best way to treat mild depression, and for severe depression,

currently, the combination of psychotherapy and antidepressant drugs is the most effec-

tive treatment [15]–[17]. Improper treatments would lead to future relapse and prolonged

discontinuation symptoms [18].

1.2.1 Detecting Depression

Challenges of Detecting Depression and Scoring Depressive Severity

Depression is widely categorized as non-depressed, mild, moderate, and severe, according

to the severity of the depressive symptoms [19]. However, a descriptive study has shown

that the rate of misdiagnosis of MDD is as high as 65.9% [14]. This means that the primary

accuracy rate is less than 35% [14]. Failure to correctly diagnose MDD is caused by

inadequate training of clinicians, as well as reasons that sufferers are not given appropriate

appointments, medical examinations and proper treatments at the early stage [14], [20].

Existing tools for diagnosing MDD tend not to be used by clinical psychologists and

physicians because these complex approaches have three main challenges:

(1) they are time-consuming and need to be administrated by well-trained engineers or

by professional clinicians [21], [22]; (2) they cannot classify depressive severity; (3) there

is no visualization result provided, for example, brain topological maps. The techniques

used for depressive disorder detection can be divided into three rough categories: (1) ques-
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The Procedure about Classifying Depression and Scoring Depressive Severities

A3 A4A1 A2

Input: 64*64*18 

Residual Neural 

Network
Output: Label or Score

Whole Frequency
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 (0.1~30Hz)

EEGs

Beta Frequency 

Bands 

(14~30Hz)

EEGs

Input: 16*64*18

Residual Neural 

Network
Output: Label or Score

Figure 1.2: The framework of depressive severity scoring system using a BCI system. The
entire procedure about classifying depression and scoring depressive severity (A1 → A2
→ A3 → A4).

tionnaires, (2) clinical sensors and (3) ubiquitous sensors. There are three most popular

questionnaires: the SCID-CV [23], the Hamilton Depression Rating Scale (HAMD) [24],

and the Beck Depression Inventory (BDI) [25], and all these three have strong histories

of use in the psychological sciences. However, the obvious shortage is that this detection

method heavily relies on the knowledge and experience of psychologists. Thus, this will

inevitably bring much manual interference into depression detection. There are three

most popular clinical diagnosis and analysis methods: electrodes, Magnetic Reso-

nance Imaging (fMRI) [26], and Functional near-infrared spectroscopy (fNIRS) [27], [28].

The electrode techniques can provide several main physiological parameters: electrocar-

diogram (ECG) [29] and EEG [30], [31]). But the obvious shortage is the time-consuming

process. There are a huge amount of ubiquitous sensors that are used outside of hospi-

tals, allowing for mood disorder detection in any location. These sensors include fashion

devices most people are familiar with, such as cameras [32], [33], smartphones [34], GPS

[35], and WiFi [36], as well as sensors that work in the background of devices, such

as accelerometers [37] and phone metadata. But these techniques require more clinical

experiments to verify their reliability and dependability.

Challenges of Ordinal Scoring on Depressive Severity

Ordinal scoring, typically known as ordinal classification, is a supervised learning problem

aiming to predict a discrete set of ordinal labels. The main difference from the classi-

fication task is that the categories are related in a natural or implied order. Ordinal

classification can be viewed as a special case of metric regression, where the regression

targets are discrete and finite. The depressive severity based on the HAMD and SCID-
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Figure 1.3: The challenge of ordinal image classification (or scoring). The X-axis denotes
the intrinsic rank of features, and the Y-axis denotes the weights of models.

CV was classified, and the 17-item HAMD cut-off points were also defined as follows:

> 24 = severe; 17 ∼ 23 = moderate; 8 ∼ 16 = mild; and none(non−depressed) = 0 ∼ 7

[38]. The differences in features between adjacent labels are not always equal to each

other. The difference in depressive symptoms between ”Mild Depression” and ”Moderate

Depression” being more obvious than that between ”Moderate Depression” and ”Sever

Depression” is one example. However, if the ordinal relationship of labels is ignored, the

ordinal regression problem will only become a simple multi-class classification issue. We

assume that the features in ordinal labels have an ”intrinsic rank,” and the corresponding

ordinal category will show a specific concentration in terms of the ”intrinsic rank.” Ci

and Ci−1 are, respectively, the centers of their corresponding neighboring ordinal classes.

(a) If the distance d between two centers is remote, the ”intrinsic rank” is slack. (b) If

the distance d between two centers is approaching the boundary, the ”intrinsic rank” is

tight. (c) If the distance d between two centers is beyond the boundary, the ”intrinsic

rank” seems to become a whole part. Under this condition, the classification task would

become extremely difficult. For example, when scoring depressive severity, the obstacle

that two neighbour categories closely share the overlapped features should be tackled, and

most time, we always could not further provide the sub-scores which can represent the

detailed information. When learning with ordinal labels, a common problem is that the

ambiguity between two neighboring categories usually has a negative effect on the training

convergence. Therefore, the performance of the learned model tends to degrade in ordinal

classes. This challenge has motivated us to develop a robust ordinal label classification

approach to analyzing ordinal data.

Ordinal classification approaches or ordinal models [39] can be roughly divided into

two aspects, Single Label Learning with Specific Loss (SLL-Loss) [40]–[43] and the Label
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Distribution Based Learning (LDBL) [40], [44]–[51]. SLL-Loss methods typically rely on

independently processing a single facial image. This ignores gradual changes in human

faces, and thus, facial appearance is usually ambiguous as regards adjacent age classes.

The LDBL methods tend to map ordinal ground-truth learning based on a Gaussian

or Gaussian-like label distribution. But in such a long-tailed case, they also ignore the

processing of ordinal neighbours or overlapping features.

1.2.2 Psychotherapy Using Large Language Models

Challenges of Fine-tuning Large Language Models

I put my red bag in the black bag <SEP>Text:

What is the color of my bag <SEP>Question: ?

.

red <SEP>Answer: .

After Pretraining

Two Colors: Red, Black  

Entity: Color, Bag 

Fine-tuning

Activated 

features

Fine-tuning

Red, Black, Other Info

After

Gate with Inhibition

black <SEP>. ×OR

Inhibition Fine-tuningDirectly Fine-tuning

Potential Risk Real Improvement

Red, Black, Other Info

Figure 1.4: A practical example of InA and its use in the BERTlarge model, which has
been fine-tuned under question-answering datasets.

Fine-tuning, the process of updating the parameters of pre-trained Language Models

(LMs), has proven to be an effective approach for various downstream NLP tasks. How-

ever, classical fine-tuning methods suffer from the issue of redundant parameters in fully

pre-trained models, which can lead to inefficiencies when adapting to new downstream

tasks. To tackle this problem, prior studies have attempted to adapt only specific vectors

or learn additional parameters while keeping most of the pre-trained parameters fixed.

This allows for better operational efficiency by loading task-specific parameters associated

with the pre-trained models before deployment. Low-Rank Adaption (LoRA) ([52] ( has

successfully achieved this goal and addressed the inference latency problem, which helps

extend model depth or reduce the usable sequence length of models ([53]–[55]) to find a

balance between efficiency and quality. The challenges in fine-tuning pre-trained LMs for

Nature Language Understanding (NLU) downstream tasks lie in reducing the number of

tuned weights and appropriately approximating the update of pre-trained weights derived

from the LMs ([52], [53], [55], [56]). Properly selecting knowledge from pre-trained LMs

is crucial to address these challenges. The question arises as to why we cannot directly
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inhibit ”redundant” knowledge during fine-tuning while retaining relevant information.

In the prior work of LoRA [52], authors only used the similarity matrix to compare

the difference between LoRA fine-tuning and fully fine-tuning methods. There is no

straight forward visualization result that can show us which part has been tuned by

such methods. In addition, when using LoRA fine-tuning method on LMs, we found

that although the low rank ”bottleneck” can compress information and reweight the pre-

trained parameters, such compressed information always contains noise and task-irrelevant

knowledge. As shown in Figure 1.4, we present an example: input = [’I put my red

bag in the black bag. What is the colour of my bag ?’], target = [’red’]. When the

threshold is 0, InA will become to LoRA, as InA also uses low rank to compress the

passing information. The target-irrelevant knowledge in this case includes pronouns (e.g.,

I, my, and what), nouns (e.g., bag), verbs (e.g., put), definite articles (e.g., the), and

adjectives (e.g., black and colour). Both full fine-tuning (FT) and adaption FT methods

still retain this target-irrelevant information, which can distract the model from focusing

on the actual target knowledge. When the target is specified as [’red colour’], the relevant

knowledge should be the adjective ”colour.” Figure 2 is a cross attention map, and it

presents the “word connection” between the column and the row word lists. The “word

connection” between “I” and “red” is reasonable, but the most important “word” should

be “red”. To make attention layers pay more attention to most important “words”, that

means making attention layers more concentrated, the noise words, such as “I” should

be inhibited. Therefore, it is essential to eliminate such target-irrelevant information to

ensure the model’s output is more concentrated on the desired target. On the right-

hand side of Figure 1.4, InA is introduced as a method to reduce the influence of the

target-irrelevant knowledge, such as the pronoun ”I.”

Challenges of Developing Psychotherapy Chatbots Using Large Language Mod-

els

Large Language Models (LLMs) have demonstrated impressive generalization capabili-

ties, such as in-context learning [57], chain-of-thoughts reasoning [58], and biomedical

diagnosing [59]. Instruction-tuning of LLMs has enabled them to follow natural language

instructions and perform real-world tasks [60]. Two main methods have been developed

for instruction-tuning LLMs: (1) fine-tuning the model on a wide range of tasks using

human-annotated prompts and feedback [61], and (2) supervised fine-tuning using public

benchmarks and datasets augmented with manually or automatically generated instruc-

tions [62]. Reinforcement Learning on Human Feedback (RLHF) has proven to be an ef-

fective way to improve LLMs in various domains, such as medicine [63], knowledge graphs

[64], and biomedical applications [65], but it comes with a high cost. Natural instructions
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Psychotherapy Domain General Domain
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Psychotherapy
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General
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 Embeddings

Figure 1.5: A semantic graph that describes how Assistant-Instruction can change the
professional embedding to a common embedding. A successful model is expected to
use the provided instructions (including task and domain definition examples) to output
responses to professional evaluation instances.

[60], and even un-natural instructions [66], can provide knowledge in multiple domains,

but LLMs pre-trained on vast corpora (e.g., Llama1 [67] and Llama2 [68] containing books,

common crawled conversations, arxiv articles, GitHub, C4, and Wikipedia data) still re-

quire additional professional knowledge, especially from domain experts. Self-Instruct

tuning [69], [70] and Guess-Instruction tuning methods have shown better performance

in aligning LLMs with human intent by learning from instruction-following data gener-

ated by state-of-the-art instruction-tuned teacher LLMs (e.g., GPT-3, GPT-3.5, and even

GPT-4). These lines of instruction-tuning research have proven effective in improving the

zero and few-shot generalization abilities of LLMs.

The dataset we aim to generate consists of a collection of instructions {It}, where
each instruction defines a specific domain t in natural language. Each domain t comprises

nt ≥ 1 input-output instances {(Xt,i, Yt,i)}nt

i=1. We hypothesize that each domain t has

its own distinct characteristics (as shown in the left panel of Figure 1.5). The objective

is for a model M to generate the correct output based on the domain instruction and

the corresponding input: M (It, Xt,i) = Yt,i, for i ∈ {1, . . . , nt}. The instruction is for-

mulated as ”Provide suggestions or comments on addressing and alleviating the following

topic,” and the instance input is formatted as ”addictive disorders.” It is important to

note that in some cases, there may not be strict boundaries between the instruction and

instance input. For example, if the instruction is ”Summarize the bellow description

and explain the below concept on [***] domain. Add more common knowledge.” and

instance input is ”Addiction and Spiritual Crisis.”, the instruction domain may overlap

with other domains. It may not always be possible to construct instructions (especially

the output) that contain specific professional knowledge. Because multi-domain knowl-

edge will make the training unstable, and the LLMs will generate the answer with some
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irrelevant knowledge. To promote diversity and individuality in the data format, we allow

these instructions, instance inputs, and outputs to incorporate additional knowledge and

assistant from other models (i.e., Y = Y + Y ′, where Y ′ is revised by GPT-4 and then

generated from GPT-4). In the right panel of Figure 1.5, we encounter the challenge of

making the data LLM-friendly, wherein we use LLMs themselves to format instructions,

instance inputs, and outputs.

1.3 Thesis Outline

In this thesis, I will explore the questions presented above, and hope to broaden our un-

derstanding of both the depressive severity detection aspects as well as the psychotherapy

of depression using chatbots, a still relatively unexplored field. The structure of the thesis

primarily relies on the content of these following five publications:

1. Kang, C.*; Li, Y.*; Novak, D.; Zhang, Y.; Zhou, Q.; Hu, Y. (2020). Brain Net-

works of Maintenance, Inhibition and Disinhibition During Working Memory. IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 7, pp.

1518-1527, July 2020.

2. Kang, C.; Novak, D.; Yao, X.; Xie, J.; Hu, Y. (2023). Classifying and Scoring

Major Depressive Disorders by Residual Neural Networks on Specific Frequencies

and Brain Regions. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2964-2973.

3. Kang, C.; Yao, X.; Novak, D. (2023). Fuzzy Windows with Gaussian Processed

Labels for Ordinal Image Scoring Tasks. Appl. Sci. 2023, 13, 4019.

4. Kang, C.; Prokop, J.; Tong, L.; Zhou, Z.; Hu, Y.; Novak, D. (2023). InA: Inhibition

Adaption On Pre-trained Language Models. Submitted to Neural Networks (Minor

Revision)

5. Kang, C.; Cheng, Y.; Zhang, Y.; Hu, Y.; Novak, D. (2023). Domain Specific

Assistant Instruction on Psychotherapy Chatbot. Submitted to Knowledge-Based

Systems (Major Revision)

In Chapter 2, we constructed the abnormal brain network connections of depression by

using EEGs, and relying on these abnormal connections, we explored the feasibility of uti-

lizing Artificial Intelligence (AI) and EEGs for depression detection, as well as depressive

severity classification. In order to prove and verify this method, we respectively collected

EEG (52 healthy and 48 depressed participants) from one university and one hospital,

now publicly available to researchers in the field. We found that EEG signals extracted
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from the beta band are more distinctive in depression classification, and these selected

channels tend to perform better in scoring depressive severity. This chapter also uncov-

ered the different brain architectural connections by relying on phase coherence analysis.

Increased delta deactivation accompanied by strong beta activation is the main feature

of depression as the depression becomes more severe. We concluded that the model de-

veloped in this chapter is acceptable for classifying depression, as well as for depressive

severity. The model can offer physicians a topological dependency, a quantified semantic

depressive severity and better models of classifying or scoring depression using EEG sig-

nals. Additionally, these selected brain regions and significant beta frequency bands can

improve the performance of the BCI system.

In Chapter 3, we propose a FW-GPL for the ordinal scoring task which is also called

an ordinal regression problem. Many published conventional methods treat depressive

severity estimation as a traditional regression problem and make a strong assumption

that each category owns adequate instances to outline its distribution. Our FW-GPL

aims to adaptively refine the ordinal label pattern by using two novel techniques: (1) as-

sembling fuzzy logic to the fully connected layer of convolution neural networks, and (2)

transferring the ordinal labels to Gaussian processed labels. Specifically, it incorporates

a heuristic fuzzy logic from the ordinal characteristic, simultaneously plugging in ordinal

distribution shapes which penalize the difference between the targeted label and its neigh-

bours to ensure a concentrated regional distribution. Accordingly, the function of these

proposed windows is leveraged to minimize the influence of majority classes that mislead

the prediction of minority samples. Our model is specifically designed to carefully avoid

the case of partial missing of continuous ordinal segments. Extensive experimental results

on several ambiguous image datasets and one EEG dataset of depression demonstrate

that our FW-GPL can achieve compelling performance compared to the State-Of-The-

Art (SOTA).

In Chapter 4, we used Phase Lock Coherence (PLC) and General Partial Directed

Coherence (GPDC) to construct connections among four adaptively fitted EEG sources,

and we also applied previous published models to describe the brain circuits of main-

tenance, inhibition and disinhibition. Referring to a classical visual n-back paradigm,

we recruited forty five mental health undergraduates in this experiment.We found that

the bilateral Prefrontal Cortex (PFC) mainly focused on some cognitive components, for

example, rehearsal before recognition to classify objects, inhibition to maintain positive

memory and activities, and disinhibition to arouse or activate subsequent interactions

in brain. Meanwhile, the right PFC sometimes could assist left PFC to implement high

capacity WM tasks. By contrast, the posterior regions, Posterior Parietal Cortex (PPC),

tends to be engaged in attention arousing and maintaining. These two findings suggest
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that a) the recurrent maintenance circuit may keep the brain executing positive cogni-

tive components, b) then the instantly monitoring inhibition would pause the deadlocked

sustention function to save energy, and c) the arriving of disinhibition arouses the next

step in brain to select new subject or focus on novel subjects.

In Chapter 5, we proposed one PEFT method inspired by neuroscience knowledge.

Fine-tuning pre-trained LMs may not always be the most practical approach for down-

stream tasks. While adaptation fine-tuning methods have shown promising results, a

clearer explanation of their mechanisms and further inhibition of the transmission of in-

formation is needed. To address this, we propose an InA fine-tuning method that aims

to reduce the number of added tunable weights and appropriately reweight knowledge

derived from pre-trained LMs. The InA method involves (1) inserting a small train-

able vector into each Transformer attention architecture and (2) setting a threshold to

directly eliminate irrelevant knowledge. This approach draws inspiration from the shunt-

ing inhibition, which allows the inhibition of specific neurons to gate other functional

neurons. With the inhibition mechanism, InA achieves competitive or even superior per-

formance compared to other fine-tuning methods on BERT − large, RoBERTa− large,

and DeBERTa− large for text classification and question-answering tasks.

Fine-tuning pre-trained LMs) may not always be the most practical approach for down-

stream tasks. While adaptation fine-tuning methods have shown promising results, there

is a need for a clearer explanation of their mechanisms for approximating the reweighting

of pre-trained LMs. To address this, we propose an InA fine-tuning method that aims

to reduce the number of added tunable weights and appropriately reweight knowledge

derived from pre-trained LMs. The InA method involves (1) inserting a small train-

able vector into each Transformer attention architecture and (2) setting a threshold to

directly eliminate irrelevant knowledge. This approach draws inspiration from the thresh-

old used in Spike Neural Network (SNN), which allows the inhibition of specific neurons

to gate other functional neurons. With the inhibition mechanism, InA achieves competi-

tive or even superior performance compared to other fine-tuning methods on BERTlarge,

RoBERTalarge, and DeBERTalarge for text classification and question-answering tasks.

In Chapter 6, we proposed one instruction tuning method based on the assistant

of LLMs. LLMs have demonstrated impressive generalization capabilities through fine-

tuning on specific tasks with human-written instruction data. However, the limited quan-

tity, diversity, and professional expertise of such instruction data raise concerns about

the performance of LLMs in psychotherapy tasks when provided with domain-specific

instructions. To address this, we propose Domain-Specific Assistant Instructions based

on AlexanderStreet therapy and counseling data and fine-tune pre-trained LLMs on this

dataset. Through quantitative evaluation of linguistic quality using automatic and hu-
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man evaluation, we observe that pre-trained LLMs fine-tuned on Psychotherapy Assistant

Instructions outperform SOTA LLMs response baselines. Our Assistant-Instruction ap-

proach offers a half-annotation method to align pre-trained LLMs with instructions. We

also release our large synthetic dataset, facilitating future studies on professional instruc-

tion tuning.

I end this thesis with an overarching framework of how we can conceptualize depressive

severity detection and allusions to possible avenues of helping depression recovery in future

research.



Chapter 2

Classifying and Scoring Major

Depressive Disorders by Selecting

Frequencies and Channels with the

Use of Residual Neural Networks

MDD – can be evaluated by advanced neurocomputing and traditional machine learning

techniques. This study aims to develop an automatic system based on a BCI to classify

and score depressive patients by specific frequency bands and electrodes. In this study,

two Residual Neural Networks (ResNets) based on EEG monitoring are presented for clas-

sifying depression (classifier) and for scoring depressive severity (regression). Significant

frequency bands and specific brain regions are selected to improve the performance of

the ResNets. The algorithm, which is estimated by 10-fold cross-validation, attained an

average accuracy rate ranging from 0.371 to 0.571 and achieved average RMSE from 7.25

to 8.41. After using the beta frequency band and 16 specific EEG channels, we obtained

the best-classifying accuracy at 0.871 and the smallest RMSE at 2.80. It was discovered

that signals extracted from the beta band are more distinctive in depression classification,

and these selected channels tend to perform better on scoring depressive severity. Our

study also uncovered the different brain architectural connections by relying on phase

coherence analysis. Increased delta deactivation accompanied by strong beta activation

is the main feature of depression when the depression symptom is becoming more severe.

We can therefore conclude that the model developed here is acceptable for classifying

depression and for scoring depressive severity. Our model can offer physicians a model

that consists of topological dependency, quantified semantic depressive symptoms and

clinical features by using EEG signals. These selected brain regions and significant beta

frequency bands can improve the performance of the BCI system for detecting depression

13
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and scoring depressive severity.

2.1 Introduction

MDD, a mental illness, often entails a heightened risk of suicidal thoughts [12]. Indi-

viduals grappling with depression frequently face misdiagnosis by physicians, leading to

a myriad of issues, including self-medication, substance abuse, inappropriate treatment,

social isolation, and impaired academic or work performance [13], [14]. Cognitive behav-

ioral therapy is effective for mild depression, while the combination of psychotherapy and

antidepressant drugs is currently the most successful treatment for severe depression [15]–

[17]. Inadequate treatments can result in future relapse and prolonged discontinuation

symptoms [18].

Depression is commonly categorized as non-depressed, mild, moderate, or severe based

on the severity of symptoms [19]. However, a descriptive study revealed a high misdi-

agnosis rate of MDD, reaching 65.9% [14]. This implies a primary accuracy rate of less

than 35% [14]. The failure to accurately diagnose MDD stems from insufficient clin-

ician training and inadequate early-stage appointments, examinations, and treatments

for sufferers [14], [20]. Existing diagnostic tools for MDD face challenges, including be-

ing time-consuming, requiring trained personnel for administration, inability to classify

severity, and lacking visualization results, such as brain topological maps [21], [22].

To address these challenges, we hypothesize that delta and beta brain activities are

linked to depression, as indicated by previous studies [1], [7], [8], [71], [72]. In our pursuit

of early depression detection, we analyze delta and beta activities and corresponding brain

networks, visualizing the results. The Phase Synchrony Index (PSI) [1], [7], [8], [71], [72] is

computed to construct brain functional networks, selecting electrodes and frequency bands

based on different PSIs between depressive and healthy groups. Subsequently, a classifier

utilizing ResNet [73] is designed to process selected EEG signals and detect depression.

Additionally, a regression model relying on ResNet is proposed to score depressive severity.

Both optimized ResNets on EEGs aim to expedite computation and diagnosis, making

this BCI system a complementary tool for depression detection, severity monitoring, and

evaluating conventional treatments in healthcare settings.

The contributions of this paper are: (1) Presenting central-parietal increased delta

deactivation with strong beta activation in the severe depression group during working

memory tasks. (2) Proposing a classification ResNet with specific frequencies and brain re-

gions for improved and practical depression detection. (3) Introducing a regression ResNet

with specific frequencies and brain regions for scoring depressive severity based on pro-

fessional psychologists’ labels. The codes and corresponding documentation can be found
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here: https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI.

2.2 Related Works

Detecting depression at an early stage is crucial to ensure timely and effective treatment,

preventing prolonged suffering and potential suicide. Machine learning approaches have

emerged as valuable tools for early detection.

In recent years, advancements in medical imaging and methods utilizing electrophysi-

ological signals have been significant. Many of these approaches focus on extracting brain

networks and employing diagnostic models. The experimental flow, as depicted in Figure

1.2, illustrates the integration of these methods. Previous studies, including [1], [7], [8],

have highlighted differences in delta and beta brain activities between individuals with

depression and those in control groups.

Building upon these insights, we have designed a specialized system, detailed in Figure

1.2. The process, depicted from A1 to A4, begins with A1, which involves calculating

the Phase Synchronization Index (PSI) between two Electroencephalogram (EEG) signals.

The formulas for computing PSI can be denoted as follows:

∆θn→m
trialk = θntrialk − θmtrialk (2.1)

rn→m =

√{∑N
trialk=1 sin(∆θn→m

trialk)
}2

+
{∑N

trialk=1 cos(∆θn→m
trialk)

}2

N
(2.2)

lagn→m = arctan{
∑N

trialk=1 sin(∆θn→m
trialk)∑N

trialk=1 cos(∆θn→m
trialk)

} (2.3)

where ∆θn→m
trialK is the difference between the angles of two electrodes (∆θntrialK and ∆θmtrialK)

under the k-th trial. N is the number of total trials, and rn→m is the mean value. We

also denote it as PSI. Lastly, lagn→m is the averaged angle of N trials. The entire

procedure for constructing brain functional connection networks is presented in our pre-

vious study [8]. Moreover, A2 shows the significant features that we have detected from

functional brain networks during working memory tasks - beta frequency band and 16 se-

lected electrodes out of 64. After these pre-processing steps, A3 shows the use of ResNet

architectures [73] and lists out the strategies for classifying and scoring depression. A4

shows two outputs which consist of the detection result for depression and the score of

grading depressive severity.

https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI
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2.2.1 Brain regions and extraction of functional networks

Methods centered around functional or structural brain networks play a pivotal role in var-

ious mental health diagnosis approaches. These techniques are particularly instrumental

in identifying conditions such as bipolar disorders [74], [75] and schizophrenia [76], with

a specific focus on depression detection through Electroencephalogram (EEG) analysis

[77]–[79]. To enhance accuracy in detection, researchers have concentrated on extracting

pertinent information during the initial pre-processing phase.

In the initial stage, when forming functional brain networks or selecting key brain

regions, various indices are computed to estimate interconnections or spectral charac-

teristics among these regions. For instance, a study during the resting state utilized

Adaboost classifiers, employing spectral coherence, to identify Cognitive Emotion Reg-

ulation Strategys (CERSs) [80]. The distinct advantages of the spectral patterns in the

left and right frontal-prefrontal regions were evident in estimating depressive symptoms

during the resting state [81]. The absolute power of the theta wave emerged as a reli-

able characteristic for discriminating depression, leading researchers to employ K-Nearest

Neighbor (KNN) with 10-fold cross-validation for classification [77]. Subsequent to cal-

culating relative wavelet energy and various entropy features via Decomposed Discrete

Wavelet Transform (DWT) coefficients on EEG signals, a feed-forward ANN was em-

ployed for depression classification [79]. A feature-level fusion approach was adopted to

identify robust features, and traditional machine learning classifiers were then applied for

depression detection using multimodal EEG data [78].

Brain networks exhibit recognizable cognitive patterns, such as the abnormal cognitive

control network observed in depressive patients [82]. Additionally, these networks reveal

electrophysiological connections in various frequency bands (delta, theta, alpha, and beta)

[8]. Leveraging brain oscillations in different frequencies, the PSI [1], [7], [8], [71], [72]

is calculated to construct functional brain networks. PSI reflects the degree of synchro-

nization between two EEG channels, and subsequent correlation coefficient calculations

based on PSI facilitate the use of an online clustering approach to construct convergent

brain networks, as detailed in prior studies [1], [7], [8], [71], [72]. Consequently, Morlet’s

wavelet is employed to calculate the time-frequency domain and the corresponding angle:

φn
trialk(f, t) =

1√
πδt

exp(
−t2

2δ2t
)exp(j2πft) (2.4)

∆θn→m
trialk = angle{exp(i[φn

trialk(f, t)])} − angle{exp(i[φm
trialk(f, t)])} (2.5)

where φi
trialk(f, t) is the Morlet’s wavelet at frequency domain f , and δt is the standard

deviation of the Gaussian function φn
trialk(f, t). When relying on the EEGLAB in the
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MATLAB environment, the wavelet cycles and the lowest time-frequency window are

selected referring to our previous studies [1], [7], [8].

2.2.2 Artificial neural networks utilization

Classifying depression through machine learning approaches significantly contributes to

expediting the diagnostic process. Leveraging machine learning methods such as (Support

Vector Machine (SVM), AdaBoost, and Random Forest (RF), the most widely employed

clinical techniques involve Magnetic Resonance Imagings (MRIs) and EEGs. To enhance

efficiency, only carefully selected channels are utilized during training tasks to prevent

information overload, which may otherwise impede training and lead to model overfitting

[83]. The typical workflow of depression detection systems can be delineated into three

distinct steps.

Step 1: Psychological Paradigm. Research indicates that adaptive dual n-back

WM training can alleviate subclinical anxiety and depression symptoms in adolescents

[84]. The learning processes of WM capacity were found to moderate the relationship

between Brain Derived Neurotrophic Factor (BDNF) and psychotherapy outcomes for

depression [85]. This highlights the crucial role of WM in reflecting depression severity.

The n-back paradigm was chosen for two reasons: (1) to control emotional task inten-

sity, a designed n-back paradigm evaluates participants’ WM capacity by adjusting task

difficulty (ranging from 0-back as the baseline to higher levels); (2) to explore potential

rehabilitation methods through WM training for future endeavors.

Step 2: Feature Extraction. Neuroimaging regions [82] and electrophysiological

areas [19] are commonly extracted and fed into machine learning models. Addition-

ally, selected EEG channels contribute to depression classification during resting or task-

completion states with eyes closed.

Step 3: Classification and Scoring of Depressive Symptoms. In recent years,

traditional machine learning approaches with EEG have been employed to identify de-

pressed subjects using methods such as ANN [79], logistic regression [86], SVM [87],

bagged tree [88], and Convolution Neural Network (CNN) [19]. Deep learning methods,

especially CNN architectures, automatically extract crucial features and score depression

severity across various psychological tasks. However,Long Short Term Memory (LSTM),

a time-series model, necessitates participants to complete long continuous tasks.

For scoring the severity of depressive symptoms, one study utilized fMRI images and

a kernel partial least squares regression model, evaluating performance with RMSE [89].

Finally, our proposed approach, based on beta EEG and sixteen specifically selected

channels, employs Residual Networks (ResNets) due to their ability to mitigate gradient

vanishing and enable deeper architectures with fewer parameters [73].
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2.3 Methodology

2.3.1 Participants and EEGs Recording

The EEG signals utilized in this study were sourced from Shenzhen University and Shen-

zhen Kangning Hospital in Shenzhen, China, with approval from the ethics committee of

Shenzhen Mental Health Center. The dataset comprises 52 healthy undergraduate dex-

tromanual students (with a gender distribution of 6:4 males to females and a mean age of

20.4± 9.7) and 48 depressed patients (with a gender distribution of 6:4 males to females

and a mean age of 34.3±12.1). Rigorous selection and assessment procedures, as detailed

elsewhere [1], were employed. In both the healthy and depressive groups, participants

had not taken any medication, and there was no personal or family history of psychiatric

or neurological diseases before the experiments. Depressed scores were assessed using the

Structured Clinical Interview for DSM-IV (SCID-CV) [23] and the 17-item Hamilton Rat-

ing Scale for Depression (HAMD), administered by two professional clinical psychologists.

Depressive patients were screened before the experiment, and those with discordant scores

(one mild, one severe) were excluded. Conversely, the final score label was determined

by computing the average score if the two psychologists’ scores were at the same level.

Depressive severity, based on the HAMD and SCID-CV, was classified, and the 17-item

HAMD cut-off points were defined as follows: severe (¿24), moderate (17-23), mild (8-

16), and non-depressed (0-7) [38]. Due to the small difference between moderate and

mild depression and an imbalance in the EEG data distribution after preprocessing, we

consolidated the categories into three groups to mitigate potential risks. Consequently,

the selected groups in this system are healthy controls (non-depressed: 0-7), depressed

with low scores (Score: 8-23), and depressed with high scores (Score: ¿24).

2.3.2 Working Memory Experiments

Building upon our prior investigations [1], [8], the n-back experiment discussed here was

conducted within the E-Prime 5.0 environment. We employed the letter variant of the

n-back tasks, designating 0-back tasks as the baseline and 1-back and 2-back tasks as the

working memory (WM) load. Participants were tasked with observing and responding to

black letter stimuli presented on a white background. Simultaneously, they were required

to press specific buttons—using the index finger for matching stimuli and the middle

finger for mismatching stimuli. In the 0-back tasks, participants identified a pre-specified

letter ’X’ on the screen by pressing the matching button. In the 2-back tasks, they

pressed the matching button if they recognized a letter that corresponded to the one

presented two trials before. The presented letters were randomly selected from English
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consonants. The experiment was divided into three segments, each containing three tasks

(0-back, 1-back, and 2-back) arranged in a random sequence to prevent any potential

performance bias caused by a predictable and fixed sequence design. Task durations were

set at 75 seconds for each segment, comprising a pseudo-random sequence of 30 consonants

(10 targets and 20 non-targets). To ensure accurate manipulation and allow sufficient

reaction time, letters were presented for 0.5 seconds and disappeared in the subsequent

2 seconds. Participants were provided with 45 seconds between every two segments for

breaks. Behavioral performance, including reaction time and response accuracy rate, was

recorded. Notably, incorrect responses were excluded during the electroencephalogram

(EEG) analysis. Once participants clarified any queries and confirmed their understanding

of the details, the warm-up tasks, serving as guidance before the formal experiment, were

concluded.

2.3.3 Preprocessing of EEGs before Training

All procedures, encompassing EEG recording and preprocessing, have been meticulously

detailed in previous studies [1]. In summary, the following steps were undertaken: (1)

removal of eye movements, (2) band-pass filtering within the frequency range of 0.16 ∼
30 Hz (24dB/Octave), (3) artifact rejection, and (4) baseline correction. Notably, the

computation of phase coherence was executed prior to the training tasks. This pre-

processing is integral to the overarching goal of this study, which aims to develop an

automated system capable of classifying depression and scoring depressive severity based

on selected frequency bands and electrodes. Brain connection maps were constructed

utilizing the phase coherence method, a technique detailed in our prior works [1], [7], [8],

[71], [72]. The input data for this process comprises EEG signals collected from either

64 or 16 channels during three distinct task types: 0-back, 1-back, and 2-back. This

comprehensive approach lays the foundation for the development of a robust system for

the classification and severity assessment of depression.

2.3.4 Residual neural networks

In Figure 2.1, 64 channels recorded EEG signals over a duration of 2.5 seconds. Sub-

sequently, a down-sampling process reduced the data length from 2500 points to 1250

points. After discarding 98 points from the tail, the input size for the first model was

set as 64× 64× 18. Two residual neural networks were employed to train the EEG data

for 0-back, 1-back, and 2-back tasks. In the second training phase, 16 electrodes selected

using the phase synchronization method resulted in an input size of 16×64×18. The total
size of the EEG data amounted to 22.5 million sampling points (48 depressive patients +
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52 healthy controls) * 60 trials * 3 tasks (0-back, 1-back, and 2-back) * 2.5 seconds * 500

sampling rates = 22.5 million. Testing the CNN with 6 residual blocks yielded optimal

performance, with a parameter size of 0.85 million, effectively preventing overfitting or

underfitting issues through proper parameter selection.

Given the widely recognized 65.9% misdiagnosis rate of MDD [14], we set the detection

rate threshold at 70%. Each participant underwent 60 trials, and the depressive proba-

bility for a participant was determined by the ratio of trials with predicted probabilities

exceeding 70% to the total number of trials. If the predicted probability for a subject on

a trial exceeded 70%, the system classified them as 100% depressive for that trial. Finally,

if, during a trial, 33 out of 40 subjects had probabilities from the ResNet classifier equal

to or greater than 70%, the model’s accuracy rate was 82.5% (33/40). Additionally, the

second ResNet regression model provided the severity score of depression, referencing the

SCID-CV system and the HAMD score.

The Structure of the Residual Nerual Network
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Figure 2.1: The structure of the constructed residual neural network. The input size is
64×64×18 or 16×64×18. Conv+BN+ReLu means the processing of convolution (Conv),
batch normalization (BN) and rectified linear unit (ReLU). FCL is the fully connected
layer. The shortcut is purely forward plus. ×3 means this block should be repeated triple
times.

2.4 Result

2.4.1 Memory load comparison of behavioural results

Table 2.1 shows the significant level between the low and the high depressed group in terms

of response accuracy rate and reaction time during three different working memory tasks

(0-back, 1-back and 2-back). During the 0-back task, there is no significant difference

(P = 0.061) between MDDs with low scores and the MDDs with high scores in terms

of the response accuracy rate. But for the reaction time, the difference is significant
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Table 2.1: The comparison of reaction time and response accuracy rates between two
different memory loads (average ± standard deviation) in two depressive groups.

Memory Load 0-back 1-back 2-back
Scores Low scores High scores Low scores High scores Low scores High scores
Response Ac-
curacy

98.9±1.4 96.3±2.2 92.8±4.7 86.3±3.6 84.9±5.3 75.5±7.6

Reaction Time 545±53 561±47 701±147 751±129 769±176 791±183
Statistics

(the low and
the high)

P value P value P value
Accuracy

Rate
P = 0.061

Reaction
Time

P = 0.017

Accuracy
Rate

P <0.01

Reaction
Time

P <0.01

Accuracy
Rate

P <0.01

Reaction
Time

P = 0.053

(P = 0.017). In the 1-back task, both the response accuracy rate and the reaction time

show a significant level (P < 0.01). When implementing the 2-back task, the MDDs with

low scores demonstrated a significant difference in response accuracy rate (P < 0.01).

2.4.2 The Connections comparison

We designated the 0-back task as the ”rest-state” and the 2-back task as the cognitive

load for WM. Consequently, a decrease in PSI signifies diminished neuronal activity in

the corresponding brain regions, indicating a return to the ’rest-state.’ Conversely, an

increase in PSI corresponds to heightened neuronal activity in these regions, reflecting

robust WM-related mechanisms.

Figure 2.2 depicts the number of significantly connected pairs based on the two WM

tasks (0-back and 2-back). Notably, for PSI decrease, the most significant differences

among the three groups lie in connections within the entire delta frequency components.

The high-scoring depressed group predominantly exhibits whole theta frequency connec-

tions, while other frequency bands show no significant differences. In contrast, consider-

ing PSI increase, the high-scoring depressed group displays the fewest delta, theta, and

alpha-connected pairs. Both depressed groups exhibit a higher number of whole beta

connections, with the low-scoring depressed group demonstrating stronger connections

in the delta, theta, and alpha bands compared to the high-scoring depressed group. To

gauge the overall impact (the product of the number of significant pairs and the corre-

sponding PSI values), representing significant PSI levels across the three groups, t-values

resulting from a two-sample t-test are shown in Figure 2.3 (P < 0.01). The most sig-

nificant frequency component is highlighted in each histogram. Aside from Figure 2.3

B, which indicates a slightly pronounced frequency part in the delta bands (P < 0.05),

the last three histograms underscore that beta frequency activation constitutes the most

significant difference.
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Figure 2.2: The number of the significant pairs in terms of the comparison between 2-back
and 0-back tasks.

2.4.3 Clusters between these Three Groups

In accordance with the comparison of PSI connections, depicted in Figure 2.4A, a dis-

cernible PSI decrease is observed in the depressive group with lower scores, contributing

to a sparse electrode connection pattern. This decrease is further illustrated by the flat

distribution in the beta frequency band, as depicted in Figure 2.2. Conversely, the PSI

increase shown in Figure 2.4B indicates that the control group fails to generate a cohesive

cluster. In contrast, the depressive group with low scores tends to concentrate connected

pairs in the left parietal and left central regions, forming what is referred to as Cluster A.

In the comparison between the depressive group with high scores and the control

group, as illustrated in the lower panel of Figure 2.4C, the PSI decrease reveals that the

control group has fewer connected pairs, primarily in the left frontal and whole parietal

areas (Cluster C). Meanwhile, the depressive group demonstrates nearly comprehensive

cerebral connections, excluding the occipital areas (Cluster B). Conversely, concerning the

PSI increase, the depressive group with high scores exhibits a compact connecting pattern

involving the left frontal-central and right central-parietal regions. Additionally, there is

connectivity observed in the left frontal-temporal and right temporal-parietal areas, as

depicted in Cluster D.
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Table 2.2: Classification (Accuracy) and scoring depression (RMSE) results (mean and
standard deviation) using whole frequency bands (delta, theta, alpha and beta).

Accuracy Rate
(>0.70)

0-back 1-back 2-back Best Result
0.457±0.063 0.429±0.100 0.514±0.164 0.734 in 2-back

Score Difference
(RMSE)

0-back 1-back 2-back Best Result
8.38±3.22 8.41±3.52 7.73±3.22 3.22 in 2-back

Table 2.3: Classification (Accuracy) and scoring depression (RMSE) results (mean and
standard deviation) using beta frequency bands.

Accuracy Rate
(>0.70)

0-back 1-back 2-back Best Result
0.514±0.217 0.429±0.226 0.371±0.217 0.783 in 0-back

Score Difference
( RMSE)

0-back 1-back 2-back Best Result
7.97±2.25 7.59±1.51 8.05±1.40 4.10 in 0-back

Table 2.4: Classification (Accuracy) and scoring depression (RMSE) results (mean and
standard deviation) using whole frequency bands (delta, theta, alpha and beta) and se-
lected EEG channels.

Accuracy Rate
(>0.70)

0-back 1-back 2-back Best
0.514±0.217 0.514±0.239 0.571±0.141 0.714 in 1-backs

Score Difference
(RMSE)

0-back 1-back 2-back Best
7.77±3.11 7.25±2.19 7.37±2.14 2.88 in 1-back

Table 2.5: By scaling the size of proposed ResNets, the below shows the classification
(Accuracy) and scoring (RMSE) results using beta frequency band and selected EEG
channels.

ResNet (Size: 2.4M)
Accuracy Rate

(>0.70)
0-back 1-back 2-back Best
0.452±0.302 0.409±0.222 0.414±0.367 0.833 (0-back)

Score Difference
( RMSE)

0-back 1-back 2-back Best
8.12±3.38 8.07±3.44 7.74±3.66 3.02 (0-back)

Default ResNet (Size: 4.6M)
Accuracy Rate

(>0.70)
0-back 1-back 2-back Best
0.429±0.226 0.514±0.126 0.457±0.234 0.871 (2-back)

Score Difference
( RMSE)

0-back 1-back 2-back Best
7.97±3.57 7.83±3.31 7.59±3.83 2.80 (2-back)
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2.4.4 The result of classifying and scoring MDD patients

Following the aforementioned pre-processing steps, each subject underwent no more than

60 trials due to the exclusion of substandard trials. The outcomes encompassing the en-

tire frequency band are detailed in Table 2.2, while specific results for the beta frequency

bands are presented in Table 2.3. In the second model, an expansion of the system was

undertaken to classify depression and assess depressive severity by extracting the beta fre-

quency band and identifying 16 significant electrodes. The online clustering step, utilizing

PSIs, produced Cluster A and Cluster D. The electrodes—Fz, F1, F3, FCz, FC1, FC3,

FC5, FT7, FT9, T7, CP3, CP2, CP4, CP6, TP8, and TP10—most frequently connected

in both Cluster A and Cluster D, significantly contributed to enhancing the performance

of depression classification and depressive severity scoring. To mitigate randomness in

results, a 10-fold computing method was employed to select the optimal outcome. For

instance, Table 2.4 illustrates a classification accuracy rate of 0.714 when utilizing the

entire frequency bands. However, Table 2.5 indicates that relying on the beta frequency

bands can yield an accuracy rate as high as 0.871. Ultimately, in the context of 2-back

tasks within beta frequency bands and with the contribution of specifically selected chan-

nels, the maximum accuracy achieved through 10-fold testing is 0.871. Concerning the

assessment of depressive severity, despite achieving a minimum RMSE result of 2.8 in

2-back tasks with beta frequency bands and specifically selected channels (as shown in

Table 2.5), the overall performance in scoring depressive severity (Table 2.5) is inferior to

that in Table 2.4.

2.5 Discussion

In this study, deactivation refers to the dominance of the rest state, while activation

signifies the processing of working memory. Our observations reveal that the low depres-

sive group exhibits weaker delta deactivations but stronger beta activations. Conversely,

the high depressive group displays more pronouncedly deactivated delta connections and

heightened activation of beta connections. Furthermore, as depressive severity intensifies,

beta right central parietal functional connections emerge in depression patients. More-

over, the beta frequency bands play a significant role in distinguishing depressive patients

from healthy controls. Specific channels, when selectively chosen, prove effective in easily

differentiating depressive patients. Utilizing beta frequency bands enhances the accu-

racy of scoring depressive severity, with the selected channels exhibiting notable scoring

advantages within the beta frequency band.
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2.5.1 Possible inducing reason for getting depression

As depressive symptoms intensify, individuals with depression exhibit more pronounced

delta deactivations and beta activations. Interestingly, there is no conclusive evidence

supporting the presence of obvious theta and alpha activities in these cases. It is note-

worthy that individuals infected with Human Herpesvirus 6 (HHV-6) do not demonstrate

a correlation with theta and alpha EEG oscillations, as reported by [90]. Furthermore, for

patients afflicted with HHV-6 infection, subsequent to medical intervention and a 14-day

recovery period, there is a noticeable slowing down of theta/delta EEG oscillations [91].

This deceleration implies a weakening of theta/delta activities [92]. Notably, Human Be-

taherpesvirus 6B (HHV-6B) infection has been associated with an increased potential risk

of mental disorders, particularly depression [93], [94]. In light of these findings, we can

infer a potential connection between HHV-6 and depression. Our subsequent research will

delve into the extent to which HHV-6 may contribute to the development of depression.

2.5.2 Topological analysis

The topological networks approach facilitates the comparison of distinct cognitive pat-

terns. On one hand, the analysis of phase coherence reveals that individuals in the

depressive group tend to exhibit diminished low-frequency WM activation, particularly in

the delta and theta frequency bands. This trend becomes more pronounced as depressive

symptoms progress from moderate to severe. On the other hand, as depicted in Figure 2.3

C and D, highly depressed patients display a significant disparity in beta WM activation

compared to those in the mildly depressed group. Consequently, the depressive group

exhibits stronger beta activations than healthy controls, with highly depressive patients

being at a heightened risk of experiencing this imbalance. Furthermore, mildly depressed

patients demonstrate a deficiency in delta and theta WM deactivation, whereas the highly

depressive group exhibits redundant delta and theta WM deactivation. During WM tasks,

the depressive group reports reduced frontal-midline theta power and increased occipital

upper alpha power during WM encoding [95]. This aligns with similar research sug-

gesting that depressive patients manifest abnormal brain activities across all frequency

bands. The topological structure of beta frequencies (Cluster D in Figure 2.4) among

highly depressive patients reveals additional central-parietal WM activation compared to

that of slightly depressive patients (Cluster A in Figure 2.4). This corresponds to findings

indicating that MDD is characterized by unique EEG oscillations in beta frequencies,

which dominate over delta, theta, and alpha when compared with healthy subjects [96],

[97]. High beta coherence is also associated with connections within and between the

Dorsolateral Prefrontal Cortex (DLPFC) or temporal regions [81].
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The increased delta deactivation during WM tasks signifies low WM loads and may be

linked to the resting recovery mechanism from cognitive maintenance. The comparison

between Cluster B and Cluster C (Figure 2.4, panel C), along with the observed increase

in the delta band (Figure 2.2), suggests a consistent upward trend in delta deactivation

as depressive symptoms intensify, as observed in a neuromodulation therapy study [98].

While the connections of the highly depressive group in the Parietal-Supplementary-Motor

Area (PSI) decrease show no clear significance, the overall cerebral delta connections

(Cluster B) suggest that they require more brain areas for WM deactivation than the

control group (Cluster C). Another study [98] found that increases in beta and gamma

power at the Left DLPFC (L-DLPFC) correlated with an improvement in depressive

symptoms. Enhanced attentional processes associated with beta and gamma oscillations

[99] may explain how Cluster A and Cluster D in beta oscillations could modulate the

attention processing of depressive subjects. Comparing Figure 2.2D with the decreased

pairs of alpha activation in Figure 2.2E provides similar evidence. Greater reductions in

upper alpha and gamma power during WM maintenance are indicative of high depressive

severity [95].

2.5.3 Contribution of frequency and topological selection for

classifying and scoring depressive patients

In this study, the utilization of a ResNet classifier to differentiate between depressive pa-

tients and healthy controls revealed a noteworthy strategy. Specifically, relying on the

single beta frequency band proved to yield a higher accuracy rate compared to incorpo-

rating all four frequency bands. Moreover, when assessing depressive severity within the

depression group, the system introduced an effective method for quantifying the degree

of depressive severity. This suggests that the beta frequency holds promise for identifying

depression patients during WM tasks [8]. Although beta frequency cerebral activities can

serve as a diagnostic tool for detecting depression, they do not contribute to enhancing

the accuracy of scoring depressive severity.

It is important to note, however, that within the beta band, the scoring results exhibit

wider variances. To ensure more robust assessments of depressive severity, consideration

should extend to all frequency bands. The relatively lower average accuracy rate may

be attributed to the limited number of psychologists involved in diagnosing patients and

providing results—only two in this case. This introduces data instability, particularly

when testing deep learning models with potentially misdiagnosed subjects.
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Table 2.6: Comparison with existing methods on classifying depression with EEGs.

References Subjects
Cross

validation
Method +
Feature

Accuracy

EEGs (Scenario)
Hanshu Cai

et al (2020)[78]
MDD = 86,
HC = 92

10-fold
KNN + EEGs
(Fp1, Fpz, Fp2)

Highest at
86.98%

Xiaowei Zhang
et al (2020)[100]

MDD = 81,
HC = 89

10-fold
CNN + EEGs +
demographic

Average at
75.29%

Xiaowei Li
et al (2019)[101]

MDD = 24,
HC = 24

24-fold
CNN + EEGs
(all frequencies)

80.74% for
mild

The proposed
method

MDD = 48,
HC = 52

10-fold
ResNet + EEGs

(beta bands
16 electrodes)

Max: 87.1%
and Average
at 45.7%

Table 2.7: Comparison with existing methods on scoring depressive severities with EEGs.

References Subjects
Cross

validation
Method +
Feature

RMSE

Images (Scenario)
Kosuke Yoshida
et al (2017)[89]

MDD = 58,
HC = 65

leave-one-out PLS + sMRI 9.56

Benson
et al (2012)[103]

MDD = 30,
HC = 0

leave-one-out RVR + MRI 2.50

EEGs (Scenario)

The proposed
method

MDD = 48,
HC = 52

10-fold
ResNet + EEGs
(beta bands
16 electrodes)

2.80

2.5.4 State of the art for classifying depressive patients

Table 2.6 highlights the significant advantages of our proposed method, with the highest

accuracy rate for detecting depression reaching 87.1%. However, when assessing the

overall performance of scoring depressive severity in 2.5, it is observed to be weaker

compared to the approach in 2.4, which utilizes the entire frequency bands. We attribute

this discrepancy to the potential influence of data quality and the limited robustness of the

proposed model. Concerning average accuracy rates, a notable limitation of our proposed

method is its inability to consistently yield stable results. Additionally, this approach

relies on psychological paradigms, specifically the n-back task, which only captures the

brain function associated with working memory.

2.5.5 State of the art for scoring depressive severities

Scoring of depressive severity is addressed in two studies based on MRI-related images with

Partial Least Squares Regression (PLSR) and Relevance Vector Regression (RVR) [102].

Table 2.7 shows that under the leave-one-out cross-validation, the minimum RMSE can

reach 2.50 [103], which means the RVR+MRI method can precisely grade the depressive

severity within 2.50 error. In this study, the proposed method shows a minimum RMSE

of 2.80 under 10-fold cross-validation.
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2.6 Conclusion and future work

In this study, we introduced a BCI system comprising two models based on the ResNet

architecture. The first model aims to detect depression, while the second model focuses on

scoring the severity of depressive symptoms. This is achieved using 16 carefully selected

channels and beta frequency EEG signals. The ResNet classifier primarily distinguishes

depressive subjects from healthy controls, while the ResNet regression model grades the

severity of depression. Our study leverages coherence analysis to identify significant fre-

quency bands and brain functional networks in depressive patients, highlighting the role

of beta frequency in detecting depression and assessing its severity. The selected EEG

channels demonstrate a substantial advantage in classifying depression.

Future research will concentrate on (1) advancing the construction of ANNs, (2) refin-

ing EEG data acquisition and selecting participants with depression, (3) designing more

robust experiments, and (4) investigating the impact of antidepressant drug treatment.

Additionally, we will explore potential connections between the inducing factors of de-

pression and HHV-6.
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Figure 2.3: The t values (significant level) of the comparison between the depression group
and the healthy control group.
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Figure 2.4: Clustering of some significantly increased and decreased phase synchronization
indices mainly in beta bands for both the two depression groups and control groups. Lines
in the up panel (panel A and B) respectively represent the significant PSI decrease and
increase during the 2-back condition. Relative to that during the 0-back condition (p <
0.05) between the depressed group with low scores and the control group. Connections
in the down panel (panel C and D) respectively represent significant PSI decrease and
increase between the depressed group with high scores and the control group. (Bc, Cc,
Cd and Dc) Cluster A, B, C and D identified in the control group and two depressed
groups respectively were significant using a control of family-wise error rate at the level of
α = 0.01. Bd, Ce, Cf and Dd are correlation coefficient of phase synchronization within
corresponding clusters. The gray panel C means that the significant level is slightly
obvious.



Chapter 3

Fuzzy Windows with Gaussian

Processed Labels for Ordinal Scoring

Tasks

In this chapter, we introduce a FW-GPL designed for unconstrained facial age estimation,

framed as an ordinal regression problem. Unlike many conventional methods that treat

age estimation as a standard regression problem, assuming each age dataset has sufficient

instances to represent its distribution, our FW-GPL seeks to dynamically refine the age

label pattern using two innovative techniques: (1) incorporating fuzzy logic into the fully

connected layer of convolutional neural networks and (2) transforming ordinal labels into

Gaussian processed labels. Specifically, our approach integrates heuristic fuzzy logic de-

rived from ordinal characteristics, simultaneously incorporating age distribution shapes.

This integration penalizes differences between the target label and its neighbors, pro-

moting a concentrated regional distribution. The function of these proposed windows is

harnessed to minimize the influence of majority classes that might mislead predictions for

minority samples. Our model is explicitly crafted to avoid issues of partial missing of con-

tinuous facial age segments, ensuring consistent performance across the entire continuous

facial age dataset. Extensive experimental results on three facial aging datasets and one

ambiguous medical dataset showcase that our FW-GPL attains compelling performance

compared to the SOTA.

3.1 Introduction

Ordinal regression, commonly known as ordinal classification, is a supervised learning

problem designed to predict a discrete set of ordinal labels. Its key distinction from tradi-

tional classification tasks lies in the fact that the categories bear a natural or implied order.

31
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For instance, in apparent age group estimation, face images are graded on an ordinal scale

ranging from ”Infants” to ”Aged.” Ordinal regression is essentially a specialized form of

metric regression, where the regression targets are finite and discrete, and the differences

in features between adjacent labels may not be uniformly equal. An illustrative example

emphasizes that the dissimilarity in facial features between ”Infants” and ”Children” is

more pronounced than that between ”Young adults” and ”Adults.” Ignoring the ordinal

relationship reduces the ordinal regression problem to a simple multi-class classification

issue.

When dealing with long-tailed age data, a common challenge arises, with head classes

tending to dominate training convergence. Consequently, the resulting age classification

model performs admirably on head classes but experiences performance degradation in tail

classes. This motivates our pursuit of a robust facial age classification approach tailored

to imbalanced ordinal data.

Facial age classification approaches can be broadly categorized into two aspects: SLL-

Loss functions [40]–[43], [104] and LDBL [40], [44]–[48], [104], [105]. SLL-Loss methods

typically process individual facial images independently, disregarding the gradual changes

in human facial appearance with aging. This often leads to indistinct or ambiguous fa-

cial representations for adjacent age classes. On the other hand, LDBL methods aim to

map ordinal ground-truth learning using a Gaussian or Gaussian-like label distribution.

However, their performance is challenged in long-tailed scenarios, where the features rep-

resenting ordinal neighbors or the distinctive features of minority classes are overshadowed

by the majority classes.

To address the challenges of long-tailed and conjugated ordinal data, we propose the

FW-GPL approach for ordinal regression. The primary objective is to stretch semantic

margins, enlarging inter-class variance, particularly for classes sharing common features.

As depicted in Figure 1.3, we assume that ordinal neighbor classes have a closely shared

feature region, introducing complexity to the ordinal classification task. A fuzzy window

with Gaussian-processed labels is meticulously designed atop deep neural networks to

mitigate the impact of semantic scoring traps, preserving age-distribution information.

Our FW-GPL consists of two crucial components: a difuzzifier window and a learning

strategy for Gaussian-processed labels. The difuzzifier window aims to reduce ambiguity

in ordinal neighbors while preserving internal ordinal age features. Simultaneously, it

seeks to narrow classifier decision boundaries for tail classes by transferring knowledge

from head classes.

Practically, Gaussian-processed labels enable the incorporation of prior knowledge

(age Gaussian-like distribution), emphasizing major age classes while mitigating the in-

fluence of distant neighbor classes. To validate the effectiveness of our proposed method,
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we conduct extensive experiments on three widely-used face aging datasets: Craniofacial

Longitudinal Morphological Face Database (MORPH) II [106], Face and Gesture Recogni-

tion Research Network (FG-NET) [107], and Cross-Age Celebrity Dataset (CACD) [108],

as well as a medical ordinal dataset, Curated Breast Imaging Subset of Digital Database

of Screening Mammography (CBIS-DDSM). Our method demonstrates competitive per-

formance, especially in handling fragmentary samples, as the choice of window length

effectively trims the influence of tail classes. The main contributions of this work can be

summarized as follows:

1. This paper proposes a novel FW-GPL method for facial age estimation. FW-GPL

can effectively model the correlation between adjacent ordinal ages and better ap-

proximate the age label distribution by avoiding long tails.

2. We also demonstrate that for the age estimation, especially when the age order is

not consecutive, FW-GPL can achieve an equivalent level with the wholly sequential

age order by selecting a proper length of the fuzzy window.

3. Extensive experiments on FG-NET, MORPH II and CACD datasets show the su-

periority of our proposed approach to most existing SOTA methods.

3.2 Related Work

The objective of this learning architecture for the ordinal regression problem is to weaken

the influence of the overlapping features F = {f1, f2, . . . , fϵ} extracted from the neighbor-

ing ordinal categories: C = {C1, C2, ..., Ci, . . . , CK} (ϵ is the number of quantized features,

and K is the number of categories). Each Ci is an ordinal category containing overlapping

features with its neighbors, {Ci-a, ..., Ci-a + 1, Ci-1} and {Ci + 1, ..., Ci + b-1, Ci + b}, where
values a and b are related to the relationship between the feature strength of the specific

category Ci and its closeness to neighboring categories work [2], [109], the boundary of

the window is {a, b}. In this paper, we also set the upper bound of the window as a

and the lower bound of the window as b). Moreover, Gaussian processed labels can pre-

vent extracted features from roughly slipping into one category, which means they make

neighboring ordinal categories meticulously divided up according to shared overlapping

features.

3.2.1 Ordinal Classification

In the machine learning field, ordinal classification models are reassembled by reformu-

lating the problem to utilize multiple binary classifiers [110]. There are some earlier
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studies working on constructing CNNs [111], [112], which have replaced the last layer of

the ordinal classification model with a number of binary classifiers [113]. In this Ordi-

nal Regression CNN (OR-CNN) architecture, the ordinal classification problem has been

converted to a number of K binary classification tasks. If the maximum value of the

ordinal label is K, we rearrange the labels with a set k = {0, 1, . . . , K − 1} and define

the binary classifier as whether the output is greater than k or not. All K binary tasks

share the same intermediate layers, but they are assigned distinct weight parameters in

the output layer [114]. This OR-CNN architecture deeply relies on the ordinal continuity

of the data. If the training dataset has insufficient and intermittent input ordinal labels,

and if the dataset has missing data (for example, 150-year-old facial-age data), the fitted

OR-CNN cannot recognize the intermittent or missing segment, which inevitably leads to

a classification crash.
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Figure 3.1: The proposed fuzzy window method (the length of the fuzzy window is 5)
with the use of Gaussian processed labels for image scoring tasks.

3.2.2 Windows for Ordinal Classification

Moving Window Regression (MWR) [109] utilizes five neurons and a local window to

estimate facial age. The model introduces the concept of relative rank (ρ rank), a novel

representation scheme for input and reference instances. This relative rank is iteratively
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estimated by selecting two reference instances to create a search window and determining

the ρ rank within that window. Essentially, MWR employs two overlapping windows with

reference centers to mitigate the influence of the relative rank, also known as ”intrinsic

rank.” Additionally, a search process is employed to identify the optimal position for the

centers, reducing the impact of overlapping ”rank.” This innovative approach has inspired

our development of a fuzzy window aimed at diminishing the overlapping features of

neighboring ordinal classes.

3.2.3 Fuzzy Scoring for Ordinal Classification

Before using fuzzy logic to disjoint the characteristic adhesion between two neighbor

categories, an OR-CNN is typically designed to be used for age estimation [115]. There

is an expectation layer that takes the predicted distribution and label set as input and

emits its expectation:

ỹ =
K−1∑
k=0

Pklk, (3.1)

where Pk denotes the prediction probability that the input image belongs to label lk.

Given an input image, the expectation regression module minimizes the error between the

expected value ỹ and ground truth ytrue. We use the below loss as the error measurement:

Losserr = |ỹ − ytrue|, (3.2)

where | · | denotes absolute value. Note that this module does not introduce any new

parameters. OR-CNN adopts a general image classification framework that maximizes

the probability of the ground-truth class during training. However, because each class is

naturally influenced by its neighbors (in Figure 3.2, we can see that the 20∼39 age group

has a feature overlap with the 40∼59 age group), the training would become unstable.

When addressing the ordinal regression problem using fuzzy logic, a notable strategy

for achieving outstanding performance involves extracting a set of fuzzy rules from an

example set and employing it as the foundational model with the assistance of a genetic

algorithm, as demonstrated by Gamez et al. [116]. Additionally, an evolutionary fuzzy

systems algorithm, leveraging monotonicity indexes, has been applied for tasks related to

ordinal classification and regression [117]. Despite these advances, there remains a lack

of a unified approach capable of addressing a wide range of ordinal image classification

problems. This is due to the prevalent tendency among researchers to develop specific

methods or systems tailored to individual problems.

Inspired by the Deep Expectation (DEX), a fuzzy scoring method has been imple-
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X:grey hair 

y:less wrinkle 

Z:sagging skin

x:black hair 

Y:more Wrinkle
z:firm skin 

40~59
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20~39(30~39)
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1.0 Original Labels

Gaussian Labels

Gaussian Curve

C1 C2 C3 C4 C5 C6 C7

Figure 3.2: The left panel presents an example that shows overlapping features between
two neighbor groups. The right panel shows the one-hot labels and the Gaussian processed
labels.

mented to mitigate the influence of tails and shared features within each class. This

approach aims to weaken feature overlaps during training steps, as presented by Kang

et al. [2]. Our previous research introduced a fuzzy window that softly adjusts shared

features to their optimal positions by balancing their distance from the center. For in-

stance, in the conditions depicted in Figure 1.3a, we set the length of the fuzzy window

to 3, with an ascending (or descending) trend of the high score (or low score) set at

1. Conversely, under the conditions illustrated in Figure 1.3c, to mitigate the impact of

overlapping features, we adjusted the fuzzy window length to 5, with an ascending or

descending trend of respective high or low scores set at 2. This configuration facilitated

the forward adjustment of the output value modified by the fuzzy window towards the

global average position, optimizing the redistributed probabilities.

P̃ (xi|yi = i) =
|i− Ṽo|
b− a

×
i + b∑
j=i−a

e−E(yj ,xj)∑ yK
y1 e

−E(yj ,xj)
, (3.3)

where b is the upper bound of the fuzzy window, and a is the lower bound. P̃ is the

probability after using fuzzy windows. E(yj, xj) is the expectation that xj is predicted

as yj. Ṽo is used to reduce the conglutination between two either neighbors or remote

classes. This was calculated with:

Ṽo(xj|yj = j) =
j × P (xj|yj)∑i + b
j=i−a P (xj|yj)

. (3.4)

3.2.4 Soft Labels and Gaussian Processes

Hard Labels: Typically represented as a one-hot vector, hard labels, such as the encoding

hi = [0; 1; 0], indicate that xi is assigned to the second class (yi = 2). However, this



CHAPTER 3. FUZZYWINDOWSWITHGAUSSIAN PROCESSED LABELS FORORDINAL SCORING TASKS37

conventional approach poses challenges in classifying ordinal images due to ambiguity and

unclear boundaries. Ambiguous images complicate the determination of the appropriate

class, creating an artificial gap that rigidly defines borders. This inherent drawback can

impede the network’s adaptability [118], [119].

Soft Labels: In contrast, soft labels represent categories using probability vectors.

For instance, the encoding hi = [0.1; 0.7; 0.2] signifies that P (Y = 2|X = xi) = 0.7, pro-

viding a more nuanced representation. Soft labels offer additional information to train-

ing models compared to traditional hard labels, as they convey probability distributions

rather than binary classifications [118], [120]. They also possess information inheritance,

enhancing resistance to disturbances during inference [104], [121], [122].

Gaussian Processes: Gaussian process approaches for ordinal regression have been

explored in various contexts, including support vector machines [123], deep neural net-

works [45], and deep learning models with Gaussian distribution labels [124]–[126]. A

study on partial label machine learning utilized the Gaussian process to handle vague la-

beling information, assuming an unobservable latent function dependent on the Gaussian

process in the feature space of each class label [46]. However, this approach may overlook

manually affected and annotated ambiguous labels, as the Gaussian distribution might

not consistently represent realistic labels without logical clarification.

For facial-age detection, techniques such as Regression CNN (RCNN) [113], [127]–

[129], Deep Label Distribution Learning (DLDL) [47], [104], and Deep Label Distribution

Learning V2 (DLDL-V2) [40] implicitly utilize learning label distribution methods, as-

suming a Gaussian-like data distribution. The distribution of facial ages is modeled using

a Gaussian distribution, and a lookup table is generated beforehand to store multi-part

integrals that explain the probability of an input image belonging to the true chronolog-

ical age [130]. In [48], label distribution learning with a normal distribution variance σ

was proposed using pµ(y, σ) to represent the k-th (k ∈ [0, 99]) element of p(y, σ).

pµ(y, σ) = 1/
√
2πσ2e−

(y−µ)2

2σ2 , (3.5)

where pµ is the probability that the true age is µ years old. It represents the connection

between the classes µ and y in a normal distribution view. The optimal σ in each iteration

depends on the optimal model parameter θ∗:

θ∗(σ) = argminθLKL(H, ytrue, θ, σ), (3.6)

where LKL(H, ytrue, θ
∗, σ) denotes the train loss. H is the training input image, while

ytrue is its label. KL is the Kullback–Leibler divergence.



CHAPTER 3. FUZZYWINDOWSWITHGAUSSIAN PROCESSED LABELS FORORDINAL SCORING TASKS38

3.3 Our Method

For ordinal regression, a widely adopted and effective approach involves employing mul-

tiple binary classifiers to determine the ordinal category for each input, known as the

K-rank approach [40], [42], [104]. However, the success of this method hinges on the con-

sistency of the ordinal regression data [113]. In this section, we propose a straightforward

and intuitive alternative that reframes ordinal regression as a conventional classification

problem. Our method utilizes Gaussian processed labels to extend the shared features be-

tween two ordinal neighbors. Subsequently, we integrate these Gaussian processed labels

with a fuzzy window [2] to stabilize the weights associated with shared features.

3.3.1 Normalized Gaussian Processed Labels

After we set the equivalent double wings of the fuzzy window, which means i−a = b−i, we
get the fuzzy window = {win1 = xi−a, ..., wina + 1 = xi, ..., wina + b + 1 = xi + b}. The

true label is defined as:

Label(xi|yi = i) =

{
0 for xi ̸= i

1 for xi = i,
(3.7)

and then the Gaussian processed label Labelg can be:

LabelG(xi|yi = i) =

 0 for xi /∈ window

1√
2πσ2

e−
(xi−µ)2

2σ2 for xi ∈ window,
(3.8)

where xi is predicted to be yi, yi is the annotated label, i is the ordinal number, µo

is the serially ordinal number of the true label, and σ is the variance. Here, we set

σ = 1/
√
2π ≈ 0.4 so as to ensure that when xi = µ, Labelg, it can be 1.

In Table 3.1, we illustrate the essential utilization difference between Gaussian Pro-

cessing (GP) labels and traditional original labels. We assume there are seven categories

in this example. The output probabilities of these seven categories are generated using an

artificial design. In Table 3.1, the traditional back-propagation error vector (Errors of the

output layer = probabilities of the output should be [0.19, 0.1, 0.01,−0.6, 0.18, 0.09, 0.03].
After we use the traditional original labels, there is only one negative error resulting

from the back-propagating calculation. If, however, we apply the GP labels on the back-

propagation processing, the original hard label vector will switch from [0, 0, 0, 1, 0, 0, 0]

to the soft label vector [0, 0.07, 0.14, 1, 0.14, 0.07, 0]. After using GP labels, the back-

propagation error vector (ErrorsG of the output layer = probability outputs Gaussian

labels) will turn to [0.19, 0.03,−0.13,−0.6, 0.04, 0.02, 0.03]. The output probability of C3

is lower than a systematic value—here, we assume this value was generated from the



CHAPTER 3. FUZZYWINDOWSWITHGAUSSIAN PROCESSED LABELS FORORDINAL SCORING TASKS39

Table 3.1: The example of using Gaussian labels. There are seven categories from C1 to
C7, a probability vector, original labels, errors w.r.t original labels, Gaussian windows (µ
= 0, and σ = 0.5), Gaussian processed labels (µ = 0, and σ = 0.5), errors w.r.t Gaussian
processed labels.

Category C1 C2 C3 C4 C5 C6 C7

Probability Outputs 0.19 0.1 0.01 0.4 0.18 0.09 0.03
Original Labels 0 0 0 1 0 0 0

Errors 0.19 0.1 0.01 -0.6 0.18 0.09 0.03
Gaussian Window 0 0.05 0.1 0.7 0.1 0.05 0
Gaussian Labels 0 0.07 0.14 1 0.14 0.07 0

ErrorsG 0.19 0.03 -0.13 -0.6 0.04 0.02 0.03

Gaussian function and there would be two negative errors, which, in the next step, are

used for back-propagation.

The ordinal vector is Ordinal = {1, 2, ..., n}, and m is the total number of ordinal

categories. Because we used cross-entropy as the loss function, the back-propagation

error between the output and the last layer after using the Labelg was:

▽g(L) = |P ×Ordinal − yi|. (3.9)

The gradient of the weight from the αth neuron in the layer L− 1 to the βth neuron

in the layer L after using the Labelg was:

▽g(L− 1) =

 P × ∂Em

∂W t
L−1(α,β))

for xi /∈ window

▽g(L)× ∂Em

∂W t
L−1(α,β))

for xi ∈ window,
(3.10)

where Em is the expectation output of the mth category, and W t
L−1(α, β) is the weight

matrix of the αth neuron in the layer L− 1. We find the value of ▽g(L) cannot always

stay positive, which means when xi ∈ window, ▽g(L− 1) should be merged using the

multiplication product of ▽g(L), sign(P − e−π(xi−µ)2) and ∂Em

∂W t
L−1(α,β))

.

Figure 3.3 illustrates the distinction between utilizing GP labels and original labels.

Let’s consider two adjacent ordinal categories, Ci-1 and Ci, along with shared quantized

features denoted by the grey area. In the initial round of Gradients Decent Direction

(GDD)s, the original center of the shared quantized features is positioned at Ca(0). If

the true label is Ci, the weight updates and back-propagation of errors cause the initial

location Ca(0) to shift to Ca(1) (refer to Figure 3.3a). In the subsequent GDDs round,

if the true label is Ci-1 based on the vector direction of the pulling force, the center will

further move to Ca(2). After deducing the location of Ca(2), the shared features’ center

tends to remain proximate to either Ci or Ci-1 but not precisely at the borderline.

Conversely, when utilizing GP labels, the center of shared features exhibits fluctuations

around the borderline of Ci, Ci-1. With original labels, the unidirectional pulling force

of back-propagation propels the shared features’ center toward Ci or Ci-1 during each
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Figure 3.3: When two adjacent categories pull the center of the shared features, the
resultant force decides where the center will finally stay. (a) When using one-hot labels, if
the initial center of the shared features is Ca(0), the resultant vector of the puling forces
toward Ci and Ci-1 will make the center slip from Ca(0) to Ca(1). Finally, the center of the
shared features will move close to either Ci or Ci-1. (b) However, if we use the Gaussian
labels, the center of the shared features will finally vibrate in the middle between Ci and
Ci-1.

updating step. However, when employing GP labels, the pulling force of back-propagation

results from the combined influence of the Ci side and the Ci-1 side.

This part is very similar to the Fast Gradient Sign Method (FGSM) in both non-

targeted and targeted adversarial attacks [131]–[133]:

Hadv = H + ϵ · sign(▽HJ(H, ynon−target)) (3.11)

Hadv = H + ϵ · sign(▽HJ(H, ytarget)), (3.12)

where x is the input image, xadv is the perturbed adversarial image, J is the classification

loss function, ynon−target or ytarget is the true label for the input H and ϵ can control the

steps toward to the targeted or non-targeted image. In our method, this step depends

on sign(P − e−π(xi−µ)2), and the targeted category is the Gaussian processed neighbor of

the true label.

3.3.2 Fuzzy Windows with Normalized Gaussian Processed La-

bels

To enhance the stability of models, it is practical to mitigate the influence of gradients

by employing a lower learning rate or a smaller updating gradient. Furthermore, when

contemplating the optimal global strategy involving the exclusive use of a fully connected
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layer, the Fuzzy Fully Connected Layer (FFCL) has been demonstrated to exert a weaker

influence on the entire neural network [2]. Consequently, irrespective of the strength of

the pulling force (represented by gradient matrices in each layer), the shared features’

center can smoothly transition to the optimal position. This integrated approach proves

particularly advantageous for classification tasks within the output OR-CNN layer.

We employ the DEX method as our foundation, wherein the true label y is quantized

into distinct label groups treated as classes. In training DEX with fuzzy windows and

normalized Gaussian-processed labels, we substitute the expectation module (the final

output layer) with fuzzy windows of varying lengths. We utilize a Gaussian function

(σ = 1/
√
2π ≈ 0.4) to process ordinal labels and subsequently modify the loss function

with a conventional cross-entropy loss. The back-propagation error between the output

and the last layer, following the application of the Labelg, is expressed as:

▽̃xi
l(xi, ytrue) =

{
P̃ − 0 for xi /∈ window

P̃ − Labelg for xi ∈ window,
(3.13)

where P̃ is calculated from Equations (3.3) and (3.4).

In Algorithm 1, we present the pseudo-code for the fuzzy window with a normalized

Gaussian processed label algorithm, addressing the ordinal regression issue. The initial

step involves processing labels through a Gaussian distribution. Upon defining the length

of the Gaussian window, LWin, the calculation of LabelG follows the Gaussian processing

template outlined in Table 3.1. However, when the Gaussian window extends to the

beginning or end of the entire age sequence (0 or m), any out-of-range elements (e.g., if

the front side of the window Frt < 0 (Frt = i−LhWin) or if the back side of the window

Bk > m (Bk = i + LhWin)) should be excluded.

The second step employs fuzzy logic to mitigate the impact of overlapping features in

ordinal neighbor classes. The value P̃i can be computed using Equation (3.3), and Ṽo is

determined through Equation (3.4). During the inference phase of the fuzzy window, an

anticipated value, obtained by summing the product of two elements—the position of the

binary classifier and the prediction probability of that specific classifier—is utilized for

the final estimation.

3.4 Experiments

In this section, we introduce one medical image dataset CBIS-DDSM and four facial-

age datasets (IMDB-WIKI, FG-NET, MORPH-2, CACD, and Depression EEG). In the

following, there are three experimental ablation results. The first shows the performance

on the selection of the hyperparameter LWin. The second ablation study presents the
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Algorithm 1 Fuzzy Windows with Normalized Gaussian Processed Labels
Input: Gaussian Processed Labels with Windows
The true labels yi={2, 10, ..., 99}, label matrix Label(yi) = {Y1, Y2, ..., Yn}. Set binary matrix
Label(yi) = zeros(m,n), m is the length of categories, n is the number of samples, and set the
length of the Gaussian window as LWin. Because LWin is an odd number which is greater than
1, the half length of the Gaussian window LhWin = 0.5× (LWin − 1). The output probability of
the model is Pi, and the ordinal vector of the fuzzy window is Ordinali =
{yi − LhWin + 1, ..., yi, ..., yi + LhWin − 1}. Initialize probability P̃i = Pi;
Output: Four Variables
Initialize LabelG(yi)={YG1, YG2, ..., YGn}; P̃i; Ṽo;
ErrorG(yi)={ErrG1, ErrG2, ..., ErrGn}.

1 for j = 1; j ≤ n do
2 compute Frt = i− LhWin;
3 compute Bk = i + LhWin;
4 if Normalized Gaussian Processed Labels then

5 Compute GW = e−πk2

, and k =
{−(LhWin − 1),−(LhWin − 2), ..., 0, ..., LhWin − 2, LhWin − 1}. Initialize Labelg(yi) =
Label(yi)

6 if Frt < 0 then
7 replace YGi with
8 [GW (|Frt| + 1), ..., GW (LWin), 0, ..., 0] ;

9 else if Bk > m then
10 replace YGi with
11 [0, ..., 0, GW (1), GW (LWin − |Bk|)] ;
12 else
13 replace YGi with
14 [0, ..., 0, GW (1), ..., GW (LWin), 0, ..., 0], where the index of Yi(GW (1)) is

i− LhWin + 1;

15 else if Fuzzy Windows then

16 Compute Ṽo by Equation (3.4); Compute P̃i by Equation (3.3);
17 else
18 Continue;

19 ErrorG(yi) = Ṽo - yi ;

20 return LabelG, Ṽo, P̃i, ErrorG;
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Table 3.2: Sample distribution of CBIS-DDSM dataset based on BI-RADS assessment.
Scores

(BI-RADS)
0 1 2 3 4 5

Training Set
(Mass + Calcification)

192
(129 + 63)

1
559

(77 + 482)
368

(279 + 89)
1286

(533 + 753)
458

(299 + 159)

Testing Set
(Mass + Calcification)

46
(33 + 13)

2
85

(14 + 71)
109

(85 + 24)
347

(169 + 178)
115

(75 + 40)

performance of FW-GPL in processing a designed fragmentary ordinal dataset. The last

one demonstrates comparison results with SOTA methods on three facial-age datasets.

3.4.1 Datasets

In this study, there are one medical image dataset and four different facial-age estimation

datasets (one for pretraining).

Ordinal Medical Dataset

Table 3.2 shows the size of one ordinal medical dataset and its corresponding splits for

training and testing.

CBIS-DDSM Dataset. The CBIS-DDSM comprises a substantial collection of dig-

itized film mammography images, encompassing 3572 images corresponding to 2689 pa-

tient cases. The dataset classifies cases based on the Breast Imaging-Reporting and

Data System (BI-RADS), utilizing assessments ranging from 0 to 5. These assessments

include BI-RADS score 0 for incomplete cases, BI-RADS score 1 for negative cases,

BI-RADS score 2 for benign cases, BI-RADS score 3 for probably benign cases, BI-

RADS score 4 for suspicious abnormal cases, and BI-RADS score 5 for highly sus-

picious malignant cases. Access to the CBIS-DDSM dataset is available at https:

//wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM.

Depression EEG Dataset. The EEG data associated with depression severity in-

cludes labels determined through the Structured Clinical Interview for DSM-IV (SCID-

CV), the 17-item Hamilton Depression Rating Scale (HAMD), and scores provided by

two professional clinical psychologists. The dataset comprises 52 healthy undergraduate

dextromanual students (with a gender distribution of 6 : 4 males to females and a mean

age of 20.4± 9.7) and 48 depressed patients (with a gender distribution of 6 : 4 males to

females and a mean age of 34.3 ± 12.1). Following established criteria [38], three groups

were defined: healthy controls (non-depressed, scores 0-7), depressed with low scores

(scores 8-23), and depressed with high scores (scores ¿24). The dataset is accessible at

https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI.

https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://github.com/ChengKang520/Classifying-and-Scoring-MDD-BCI
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Facial-Age Estimation Datasets

Table 3.3 shows the size of each dataset, and the corresponding splits for training and test-

ing.

Table 3.3: Facial-age datasets used to evaluate the proposed FW-GPL.
Datasets
Name

Train Test Val Total
Label
Range

IMDB-WIKI 260,282 ⊗ ⊗ 523,051 0–100
FG-NET 990 12 ⊗ 1002 0–69

MORPH 2 4380 1095 ⊗ 5475 16–70
CACD 145,275 10571 7600 163,446 ⊗

IMDB-WIKI. For the IMDB-WIKI dataset (IMDB-WIKI can be downloaded from

http://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/), the authors crawled im-

ages of celebrities from IMDB (www.imdb.com) and Wikipedia (https://en.wikipedia.

org/).

FG-NET. The Face and Gesture Recognition Research Network (FG-NET) [107] aging

database consists of 1002 color and grey-scale images, which were taken in a totally

uncontrolled environment. On average, there are 12 images for each of the 82 subjects,

whose age ranges from 0 to 69 (FG-NET is available at https://yanweifu.github.io/

FG_NET_data/).

MORPH-2. The Craniofacial Longitudinal Morphological Face Database (MORPH)

[106] is the largest publicly available longitudinal face database containing more than

fifty thousand mug shots (You can find MORPH-2 from https://www.faceaginggroup.

com/morph/).

CACD. The Cross-Age Celebrity Dataset (CACD) [108] collected from the Internet con-

tains 163,446 images from 2000 celebrities. This dataset splits into three parts, 1800

celebrities are used for training, 80 for validation, and 120 for testing (The link of CACD

is http://bcsiriuschen.github.io/CARC/).

3.4.2 Evaluation Metrics

For model evaluation and comparison [134], we computed the Mean Absolute Error (MAE)

[135] and RMSE [136], on the test set after the last training epoch:

MAE =
1

N

N∑
n=1

|ỹ − y| (3.14)

RMSE =

√√√√ 1

N

N∑
n=1

|ỹ − y|2 (3.15)

http://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
www.imdb.com
https://en.wikipedia.org/
https://en.wikipedia.org/
https://yanweifu.github.io/FG_NET_data/
https://yanweifu.github.io/FG_NET_data/
https://www.faceaginggroup.com/morph/
https://www.faceaginggroup.com/morph/
http://bcsiriuschen.github.io/CARC/
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where ỹ is the output value of OR-CNNs, y is the real facial age label, and N is the total

number of test samples.

3.4.3 Experiment Settings

Following DEX [112], Soft Stagewise Regression (SSR) [43], Mean Variance (MV) Loss

[41], and Compact yet efficient Cascade Context-based Age Estimation (C3AE) [42], the

model can be first pre-trained on the IMDB-WIKI dataset. This method can be embedded

into any CNN ordinal classification model. We respectively set the length of the fuzzy

window LWin as 10 for facial-age detection and 3 for breast cancer detection. We used

the Adam optimizer in all the experiments, and similarly to SSR and C3AE, the initial

learning rate, dropout rate, momentum, and weight decay were set to 0.002, 0.2, 0.9, and

0.0001, respectively. The learning rate was 0.001 with a decay every 10 epochs by a factor

of 0.9. Compared with the SOTA methods, each model totally trained two hundred epochs

with a batch size of 50. During the training steps, to avoid overfitting the overlapping

features, we adjusted the training strategy according to Algorithm 2.

Algorithm 2 Training Model
Input: The accuracy rate Acc after validation in every epoch, threshold ratio is Treratio = 0.8,

and epochN is the number of total epochs. Before using Algorithm 1, Accaverage is the
average accuracy;

Output: Model.
1 for j = 1; j ≤ epochN do
2 if Current Accj > Treratio ×Accaverage then
3 Train Model under Algorithm 1 with FW-GPL;

4 else
5 Train Model under Algorithm 1 without FW-GPL;

6 return Model;

3.4.4 Hardware and Software

All loss functions and neural network models were implemented in MATLAB2019b and

PyTorch 1.7 and trained on four Tesla V100 graphics cards (The source code is available

at https://github.com/ChengKang520/FW-with-GPL-for-Ordinal-Regression.

3.5 Results and Analysis

So as to compare with the SOTA results, we respectively summarize the comparison result

of CBIS-DDSM in Table 3.4 and the comparison result of facial-age detection in Table

3.5.

https://github.com/ChengKang520/FW-with-GPL-for-Ordinal-Regression
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3.5.1 Scoring Breast Cancer Images

Table 3.4: Comparison with existing methods on DDSM in terms of ACC.
Method CNN + FCL CNN + FFCL CNN + W-GPL

Geras [137] (BI-RADS: 0/1/2) 68.8% 70.1% 70.3%
Akselrod-Ballin [138] (BI-RADS: 2/(3-4-5)) 60.0% 62.3% 62.4%

Kang [2] (BI-RADS: 0/(2-3)/(4-5)) 72.0% 74.1% 74.2%
Kang [2] (BI-RADS: 0/1/2/3/4/5) 56.34% ±1.4% 57.40% ±1.7% 58.29% ±1.9%

As we set the hyperparameter LWin = 3 when scoring BI-RADS, only when the cate-

gories are greater than 3 in number can our FW-GPL work well to reduce the influence

of overlapping features among neighboring ordinal classes—this can also be seen in Ta-

ble 3.4. We find that only when scoring the BI-RADS of six categories does FW-GPL

show a weak but obvious improvement. The distance d between BI-RADS score 2 (be-

nign) and BI-RADS score 3 (probably benign) is probably beyond the ”boundary”, as

is the distance d between BI-RADS score 4 (suspicious abnormal) and BI-RADS score 5

(highly suspicious malignant); therefore, the classification task for BI-RADS is difficult.

3.5.2 Scoring Facial-Age Images

When scoring facial-age images, we configured the model with 10 neurons and a window

length of 5. Table 3.5 provides a summary of the results obtained by comparing our

model with state-of-the-art (SOTA) models across three facial-age datasets. In contrast

to label distribution learning methods like DLDL-V2 [40] and MV Loss [41], our FW-GPL

utilizes a fixed pattern (Gaussian processed labels) to learn features that account for age

distribution without requiring prior knowledge of the image data’s age distribution. Com-

pared with models employing specialized loss functions, especially FW-GPL demonstrates

competitive performance against most SOTA methods, including MV Loss [41], SSR [43],

and C3AE [42]. The effectiveness of FW-GPL can be attributed to the fuzzy window,

which mitigates the influence of conjugation among neighboring ordinal categories. Un-

like DLDL-V2 [40], MV Loss [41], and SSR [43], which consider the entire probability, or

C3AE [42], which focuses solely on the two highest output probabilities.

Another advantage lies in the fact that the Gaussian processed labels eliminate the

need to fit a hyperparameter σ [48] to approximate the true age probability distribution.

In comparison to FW-GPL, MWR [109] employs global and local relative ordinal regres-

sors (ρ regressors) to predict ρ ranks within both the entire and specific rank ranges.

Additionally, MWR refines an initial search window iteratively, moving it by selecting

two reference instances, and ultimately estimates the ρ rank within the window.
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Table 3.5: In terms of MAEs, our approach is compared with different SOTA methods.
(* indicates the model was pre-trained on the IMDB-WIKI dataset.)

Type Method MORPH 2 FG-NET CACD Paras

Bulky

DEX [112] 3.25 4.63 - 138M
DEX * [112] 2.68 3.09 6.52 138M
MV [41] 2.41 4.10 - 138M
MV * [41] 2.16 2.68 - 138M
DLDL-v2 [40] 1.969 - - 138M
FP-Age [139] 2.04 5.60 5.60 138M
FP-Age * [139] 1.90 4.68 4.33 138M
DRF [44] 2.80 3.47 5.63 -
PML [140] 2.31 2.16 - -
JREAE [51] 2.71 3.390 4.596 -
MWR [109] 2.13 - 5.68 -

FW-GPL [Ours] 2.71 4.27 - 138M
FW-GPL * [Ours] 2.24 2.73 6.10 138M

Compact

ORCNN [41] 3.27 6.44 - 479.7K
MRCNN [41] 3.42 - - 479.7K
SSR [43] 3.16 - - 40.9K
C3AE [42] 2.78 4.09 - 39.7K
C3AE * [42] 2.75 2.95 - 39.7K
AVDL * [48] 2.37 2.32 - 11M
MWR [109] 2.00 2.23 - -

FW-GPL[Ours] 2.72 3.71 - 40.9K

3.5.3 Scoring Depressive Severity using EEGs

Table 3.6: Comparison with existing methods on scoring depressive severities with EEGs.

References Subjects
Cross

validation
Method +
Feature

RMSE MAE

Images (Scenario)
Kosuke Yoshida
et al (2017)[89]

MDD = 58,
HC = 65

leave-one-out PLS + sMRI 9.56 -

Benson
et al (2012)[103]

MDD = 30,
HC = 0

leave-one-out RVR + MRI 2.50 -

EEGs (Scenario)

Hashempour
et al (2022)[141]

MDD + HC
= 119

10-fold
CNN-TCN + EEGs
(64 electrodes) +
Eyes-Open State

2.37±1.3 1.73±0.27

Kang et al
(2023)[6]

MDD = 48,
HC = 52

10-fold

ResNet + EEGs
(beta bands
16 electrodes) +
N-back Paradigm

2.80±1.6 2.01±0.32

The proposed
method

MDD = 48,
HC = 52

10-fold

ResNet + EEGs
(beta bands +
16 electrodes) +
N-back Paradigm +
FW-GPL (win = 10)

2.41±1.5 1.87±0.34

After we set the hyperparameter LWin = 10, our FW-GPL works well to score de-

pressive severity, as it achieves the lower RMSE and MAE comparing to SOTA results.

With the use of EEGs, Hashempour et al [141] also applied CNNs under Temporal-

Convolutional Neural Network (TCN) to score depressive severity. But they used 64

electrodes, not 16 electrods to detect depressive severity. In Table 3.6, the application of

EEGs and CNN models presents the best performance.
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3.6 Ablation and Discussion

Based on the facial-age image classification, we used the ordinal IMDB-WIKI data to do

the ablation analysis. The ablation study was conducted in three parts: (1) to analyze the

influence of the number of neurons, (2) to analyze the influence of the length of window

LWin, and (3) to figure out how this model could process incomplete ordinal data.

3.6.1 Ablation Study I (Influence of the Number of Neurons)

We used the classical pre-trained DEX model as the base. In Tables 3.7 and 3.8, we see

that when the neuron number N is 10 or 5, the DEX model can get the best performance.

This finding echoes prior research showing that when the number of neurons in the output

layer is 10 or 5, DEX-family age detection models can achieve better performance [109].

In other words, a smaller N has a better error tolerance.

Table 3.7: Test performance of the FW-GPL method, with the LWin = 10 (set length of
output neurons N as [100, 50, 20, 10, 5]).

Method DEX DEX with FW-GPL

N 100 50 20 10 5
RMSE 12.46 13.36 12.65 12.60 12.80
MAE 8.94 8.67 8.79 8.62 8.59

Table 3.8: Test performance of the DEX method (set length of output neurons N as [100,
50, 20, 10, 5]).

Method DEX DEX without FW-GPL

N 100 50 20 10 5
RMSE 13.57 13.38 12.86 12.67 12.71
MAE 8.96 8.83 8.77 8.64 8.74

3.6.2 Ablation Study II (Influence of the Length of the Window

LWin)

We employed two types of output layers (corresponding to N = 100 and N = 10) to assess

the performance of FW-GPL across different values of LWin. The results are consolidated

in Tables 3.9 and 3.10. Since the length of the half window, LhWin, must exceed the

number of neurons in the output layer, we observed that a broader window (LWin = 50

or LWin = 100) yields superior performance when there are 100 neurons in the output

layer. Similarly, this trend is consistent when the number of neurons in the output layer

is 10. The rationale behind this observation is that a wider window can accommodate

ample information for accurately estimating facial age. However, when N ≤ LhWin, no
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discernible improvement is observed. This underscores the importance of selecting an

appropriate window length, as it directly influences the performance enhancement of the

FW-GPL model.

Table 3.9: Test performance of FW-GPL on testing data sets (length of output neurons
set as 100).

Method DEX with FW-GPL

LWin 5 10 20 50 100
RMSE 15.17 15.10 14.58 13.65 13.68
MAE 10.18 10.11 9.78 9.69 9.71

Table 3.10: Test performance of FW-GPL on testing data sets (length of output neurons
set as 10).

Method DEX with FW-GPL

LWin 5 10 20
RMSE 12.91 12.60 12.60
MAE 8.78 8.62 8.62

3.6.3 Ablation Study III (Incomplete Ordinal Image Data)

We manually removed some age segments of the IMDB-WIKI to train the model and test

it in the complete ordinal text data, as shown in Figure 3.4. In Table 3.11, we can see

that when the number of neurons is 100, the most proper window is 20. In Table 3.12,

when we set the length of the window as 10, the lowest MAE appears when the number

of neurons is 5. Consequently, there is no obvious difference between the incomplete (this

section) and complete (Ablation Study II) ordinal image data, and the result can only be

affected by the number of neurons N and the length of the window LWin.

Table 3.11: Test performance between the DEX and the FW-GPL with fragmentary
IMDB-WIKI dataset. (length of output neurons set as 100).

Method DEX FW-GPL

LWin 0 5 10 20 50
RMSE 12.46 14.73 14.30 13.64 12.72
MAE 8.94 9.43 9.13 8.78 8.81

3.6.4 Advantage and Limitation

In addressing the challenge of ordinal image classification head-on, our approach aims to

mitigate the impact of overlapping features. The window’s length plays a pivotal role in

controlling the defuzzification of ordinal neighbor categories. While JREAE [51] leveraged

two covariance matrices to capture correlations in both input facial features and output
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Figure 3.4: This figure shows the condition that the BI-RADS or the facial-age dataset is
not consecutive. (a) The class distribution of CBIS-DDSM. (b) The age distribution of
the IMDB-WIKI. The blue bars are the fragmentary IMDB-WIKI, whereas the red bars
are manually removed.

Table 3.12: Test performance between the DEX and the FW-GPL with fragmentary
IMDB-WIKI dataset. (length of the window set as 10).

Method DEX FW-GPL

N 101 50 20 10 5
RMSE 12.46 13.36 12.65 12.60 12.80
MAE 8.94 8.67 8.79 9.08 8.59

age labels, certain methods within this family (e.g., DRF [44] and AVDL [48]) should first

consider the age distribution inherent in the dataset. This consideration becomes crucial

because fitting the distribution of the facial age dataset may introduce an inevitable

deviation from the true age distribution. To circumvent this issue, our method employs a

Gaussian distribution within the window to approximate the relationship between input

facial features and output age labels. As evidenced in Table 3.5, our approach outperforms

other LDBL methods, showcasing the advantages of employing label distribution-based

learning techniques.

However, a notable drawback lies in our reliance on a simple fuzzy logic window to

tackle the challenges posed by ordinal image classification tasks. Unlike MWR [109],

which dynamically adjusts the distance between the real age and the center of the moving

window, our method confines the window’s center using naive fuzzy logic to modify the

facial age distribution within the window. This approach tends to overlook the influence

of remote yet highly relevant features lying beyond the window’s scope. Despite attempts

to utilize longer windows, our method struggles to address this limitation effectively.
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3.7 Conclusions

In this paper, we propose a novel approach for ordinal image scoring, termed Fuzzy Win-

dow with Gaussian Processed Label Learning (FW-GPL). FW-GPL introduces a method

to mitigate the impact of overlapping features between two ordinal neighbors, resulting in

superior performance compared to other methods across multiple age estimation datasets

and a medical dataset with ambiguous annotations. Our experiments also demonstrate

that FW-GPL effectively handles discontinuous ordinal regression by adjusting the win-

dow length.

The innovative use of fuzzy logic and a Gaussian process strategy to guide ordinal

image classification is promising, and we plan to explore additional applications. Several

directions for future work are identified: (1) We intend to apply this method to various

ordinal medical tasks, such as scoring the severity of depression and grading spinal cord

injuries, in our forthcoming research. (2) Despite not achieving the best State-of-the-Art

(SOTA) result, we aim to enhance performance by integrating FW-GPL into other SOTA

models. (3) To optimize computational efficiency, we will fine-tune pre-trained models

incorporating FW-GPL to minimize computing costs.



Chapter 4

Brain Networks of Maintenance,

Inhibition and Disinhibition During

Working Memory

WM, a crucial cognitive function responsible for information maintenance, serves as an

indicator of brain function. Activities associated with memory sustention, inhibition, and

disinhibition are integral to understanding the fundamental neurocognitive architecture.

Despite proposed brain models attempting to elucidate the entire WM process, conclu-

sive evidence and detailed descriptions, particularly regarding the regions and structures

involved in maintenance, inhibition, and disinhibition, remain sparse. In our study, we

utilized phase lock coherence and general partial directed coherence to establish connec-

tions among four adaptively fitted EEG sources. Additionally, we employed previously

published models to characterize the brain circuits associated with maintenance, inhibi-

tion, and disinhibition. Conducted with forty-five mental health undergraduates using

a classical visual n-back paradigm, our experiment revealed that the bilateral PFC pri-

marily focused on cognitive components such as rehearsal before recognition for object

classification, inhibition to maintain positive memory and activities, and disinhibition to

timulate subsequent interactions in the brain. Furthermore, our findings indicated that

the right PFC occasionally assisted the left PFC in executing high-capacity WM tasks.

In contrast, posterior regions, specifically the PPC, were observed to be engaged in atten-

tion arousing and maintenance. These two key observations suggest that: a) the recurrent

maintenance circuit plays a vital role in executing positive cognitive components; b) the

instantly monitoring inhibition temporarily pauses the sustained function to conserve en-

ergy; and c) the arrival of disinhibition stimulates the next step in the brain, prompting

the selection of new subjects or a focus on novel subjects.

52
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4.1 Introduction

WM is defined as the capacity to guide behaviors [142] and has been linked to the con-

trol of attention [143] and academic performance [144]. Although there is no consensus

on the neurocognitive architecture of WM, its fundamental conceptualization involves

the short-term maintenance of information [145]. Numerous traditional WM paradigms,

characterized by lower capacity, have been employed in various clinical populations to

assess the performance of individuals with mental impairments, including schizophrenia,

stroke, traumatic brain injury, and Attention Deficit-Hyperactivity Disorder (ADHD). A

critical yet unmet clinical need exists for non-invasive measures to evaluate WM activity

and guide psychological interventions.

This study undertakes a multifaceted approach. Firstly, we (i) evaluate behavioral

performance through the implementation of n-back paradigms. Subsequently, (ii) we

analyze brain networks associated with WM using phase-lock coherence and directional

coherence after adapting a 64-channel electroencephalogram (EEG) and generating four

sources to simulate cerebral internal communications. Additionally, (iii) we propose a

”neurocognitive architecture” of working memory based on region-to-region connections,

revealing pathways of memory maintenance and lateral inhibition during WM. This study

sheds light on the processes of WM and its corresponding brain regions through coherence

and provides a non-invasive assessment of functional networks during WM tasks in the

healthy population.

The proposed neurocognitive architecture of working memory [145] encompasses 1)

the selective attention process, 2) object information recognition and maintenance, 3)

rehearsal process, 4) update and attention sustentation, and 5) inhibition [145], [146].

This concept, building on existing ideas, elucidates the WM procedure by integrating

various processing descriptions and emphasizing the concepts of memory maintenance and

lateral inhibition [145]. Visual cortex, prefrontal cortex (PFC, primarily comprising the

posterior superior frontal gyrus and middle frontal gyrus), posterior parietal cortex (PPC,

predominantly located in the intraparietal and superior parietal cortex), and inferior

temporal cortex are integral regions in visual WM paradigms [142], [147], [148]. This

chapter delineates the processes of WM and its associated regions through brain coherence

and introduces a non-invasive assessment of functional networks during WM tasks in

the healthy population. Based on different neurocognitive stages, four major procedures

during WM tasks are elucidated in this chapter.

1. We assessed the behavioral performance after subjects implementing n-back paradigms,

2. we examined brain networks of WM by phase-lock coherence and directional co-

herence after the 64 channels EEG adaptively fitted and four sources generated to
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simulate cerebral internal communications,

3. We proposed our “neurocognitive architecture” of WM based on region-to-region

connections, and found the pathways of memory maintenance and lateral inhibition

during WM.

4.2 Related Work

4.2.1 Pathway for Attention Arousal and Executive Function

It has been proposed that the Prefrontal Cortex (PFC) plays a crucial role in resilient

information maintenance during Working Memory (WM) tasks. Numerous meta-analyses

have consistently shown that the left PFC, particularly the ventral aspect, is closely as-

sociated with verbal WM tasks, while activation of the right PFC, particularly the dorsal

aspect, is consistently observed in spatial WM tasks [149]–[152]. Lesion studies affirm

these associations, revealing electrophysiological activities that demonstrate neural con-

nections in the PFC of monkeys [153], [154]. Additionally, fNIRS has been employed to

assess WM load by monitoring blood activities in the PFC [155], further establishing the

importance of PFC in normal WM. Alongside the PFC, the Parietal Posterior Cortex

(PPC) is strongly implicated in WM tasks [156]. Spatial WM tasks, which typically acti-

vate the right hemisphere, engage the bilateral parietal cortex [149], [151]. Subsequently,

both fMRI and Positron Emission Tomography (PET) studies have demonstrated that

the PFC can select content represented in posterior regions [152]. Nevertheless, some

studies have proposed that the superior parietal cortex may be associated with executive

function and selective attention control [157], [158]. Furthermore, investigations into the

integrity of white matter pathways have elucidated connections among the PFC, parietal

cortex, and temporal cortex during WM tasks [148], [159].

4.2.2 Pathway for Coding and Decoding

Working memory necessitates the encoding and subsequent selection of relevant content

amidst distractors [160]. The interplay between the Prefrontal Cortex (PFC) and Pos-

terior Parietal Cortex (PPC) has been validated as a source of top-down signals that

insulate stimulus-coding networks [161], [162]. The adaptive coding observed in PFC

showcases its fundamental capability to classify learning tasks [163], [164]. Notably, the

phenomenon of population coding within PFC neurons has been identified as contributing

to the transition between various representational states, particularly in the context of a

delayed paired associates task [165].



CHAPTER 4. BRAIN NETWORKS OFMAINTENANCE, INHIBITION ANDDISINHIBITION DURINGWORKINGMEMORY55

Sources analysis has revealed the initial dynamic visual encoding occurring in posterior

brain regions, alongside the encoding of selection rules in the prefrontal cortex. These

encoding and decoding components, as identified through sources analysis, play a crucial

role in the maintenance of memory content [166]. Furthermore, multivariate decoding and

source analyses have provided insights into the reliance on prefrontal and parieto-occipital

persistent oscillatory neural activity for the selection of memory content [166].

4.2.3 Pathway for Sustained Brain Activity

Maintenance and sustention in brain might consist of memory storing, goals and tasks

keeping, and attention sustaining. Stronger synaptic connectivity were thought to be

associated with the brain network of sustained higher activity [145]. Particularly, fronto-

parietal activity was examined to be relative to components of task-general processing,

such as maintaining goals and task sets [167].

4.2.4 Pathway for Lateral Inhibition

In tasks involving WM, it is imperative to consider multiple factors for inhibition, partic-

ularly when the WM system reaches its capacity. Inhibition becomes essential to prevent

the decay of persistent activity [142]. A dynamic model employing a winner-take-all

mechanism has been proposed to elucidate robust lateral inhibition among memory rep-

resentations, highlighting that inhibition typically leaves only the winning representation

active [145]. To integrate both new and old information in WM tasks, cognitive inhibi-

tion (the ability to inhibit irrelevant information and selectively attend to goal-relevant

information) and response inhibition (the ability to inhibit a prepotent response) are cru-

cial components [168]. The attribution of these distinct regions to storage or executive

components and their communication during the implementation of relative WM tasks

remained unclear [151]. Regions such as the superior parietal cortex, posterior part of

the superior frontal area, and the middle frontal area are implicated in completing visu-

ospatial WM tasks and tasks requiring the aforementioned components [161], [162], [169].

Despite recent identification of active regions by researchers, few studies have explored

the architecture of inhibition and sustention among these areas, particularly the struc-

ture of loops explaining WM. To validate the ”human neurocognitive architecture” of

working memory, we utilized EEG sources and their connections to construct a commu-

nicational model based on these cognitive components. Various dynamic and statistical

algorithms, such as the directionality of neural information flow [170]–[172] and PLC re-

lying on time lag [8], [173], [174], have been developed to measure the transmission of

neural signals. Approaches like Partial Directed Coherence (PDC) [175] and GPDC [176]



CHAPTER 4. BRAIN NETWORKS OFMAINTENANCE, INHIBITION ANDDISINHIBITION DURINGWORKINGMEMORY56

Figure 4.1: The experimental procedures with their timelines. Subjects should respond
to stimuli by pressing the number key 1 with index finger for match (target stimulus) and
pressing the number key 2 with middle finger for mismatch (nontarget stimulus).

have been proposed for analyzing brain networks based on EEG studies. Both PLC and

GPDC have demonstrated significant utility in structural systems [177] and in real organ-

isms, including applications in Parkinson’s [172] and Alzheimer’s [178] disease patients,

depression patients [7], [8], hippocampal-prefrontal activation in monkeys [177], and kainic

acid-anesthetized rats [179].

4.3 Methods

4.3.1 Participants

Forty five healthy undergraduate dextromanual students (6:4 male to female, and mean

20.4 years) were called for visual n-back paradigms. This study was approved by the

local institutional ethics review board. A written informed consent was obtained from

each subject before the experiment. These subjects have no medication before, and no

personal or family history of psychiatric or neurological disease.

4.3.2 Experimental Procedures

We utilized E-Prime 5.0 to design the n-back experiment for our study. The letter variant

version of the n-back tasks, encompassing 0-back as a baseline and 2-back as the working

memory load, was employed. Participants were instructed to observe and respond to

stimuli on the screen by pressing the index finger button for a match (target stimulus)
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and the middle finger button for a mismatch (nontarget stimulus). Specifically, during

0-back tasks, subjects were tasked with identifying a pre-specified letter ’X,’ while in 2-

back tasks, they were required to recognize a letter that matched the one presented two

trials back. The presented letters were randomly selected from English consonants (as

illustrated in Figure 4.1).

The entire experiment was segmented into three parts, each comprising two 0-back

tasks and two 2-back tasks, with the task order randomly arranged. The duration of

each 0-back or 2-back task was set at 75 seconds, featuring a pseudorandom sequence

of 30 consonants (10 targets and 20 nontargets). Letters were presented for 0.5 seconds,

followed by a 2-second disappearance to allow subjects time for reaction. A 45-second

break separated each part. Subjects were instructed to respond as swiftly and accurately

as possible. For behavioral performance analysis, reaction time and response accuracy

were recorded, with incorrect responses excluded from the EEG analysis. Prior to the

formal experiment, subjects underwent practice sessions, repeating tasks until they were

confident in their understanding of every detail.

4.3.3 EEG Recording

The EEG data were recorded with the BrainAmp amplifier (Brain Products, Munich,

Germany) and Braincap electrode cap (EASYCAP, Herrsching, Germany). According to

the international 10–20 system, all 64 Ag/AgCl channels were referenced during recording

to electrode (FCz) with a forehead ground (AFz). To remove eye movements, vertical

and horizontal Electrooculogram (EOG)s were recorded from two additional channels

located at the right side of the right eye and below the left eye. Electrode impedance was

maintained below 5kΩ throughout the experiment. No filter was used during recording

(Sampling rate: 1000 Hz).

4.3.4 Data Analysis

After a band-pass filter at 0.16-30 Hz (24dB/Octave), artifact rejection and baseline

correction, EEG data analysis was divided into data preprocessing, source modeling, phase

lock coherence and general partial directed coherence. The aim of data preprocessing is to

acquire standard trials for each subject. After artifact rejection and removal of trials that

subjects responded incorrectly, an average of 53 trials for 0-back tasks and an average

of 49 trials for 2-back tasks were kept among all subjects, which were used to construct

source model and coherence analysis. The PLC provides stable connections within specific

durations, whereas GPDC can display the direction of each connection and the detail in

different time periods.
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Figure 4.2: Illustration of brain altered scalp voltage maps of 2-back condition minus 0-back
condition in the front and back hemispheres during different periods. The circled electrode sites
are Fz and Oz. The GFP (the sum of squares of all channels, normalized to 100%) shown in the
central is displayed in a logarithmic scale..

Data Preprocessing and Single-Trial Source Waveform Extraction

The averaged Evoked Related Potential (ERP) waveforms for individual subjects were

computed under both 0-back and 2-back conditions. Subsequently, the difference wave

between these two conditions was calculated for each subject. By averaging the differ-

ences across all subjects in each corresponding channel, the collective representation of

Electroencephalogram (EEG) was generated, illustrating scalp topography performance

(see Figure 4.2). This representation was then transformed into source waveforms (Figure

4.3). Building upon functional Magnetic Resonance Imaging (fMRI) findings that high-

lighted activations in the bilateral superior/inferior parietal lobules and bilateral inferior

frontal gyri in the 2-back vs. 0-back contrast [180], a discrete model with four sources was

developed to extract source waveforms. The decision to construct a Regional Source (RS)

model instead of a dipole model was based on the capability of a single RS, composed of

three mutually orthogonal dipoles, to accurately represent activity in multiple gray mat-

ter patches with different orientations in a specific brain region [181], [182]. Additionally,

an inter-hemispheric symmetry constraint for the coordinates of the RS pair was imposed

during source modeling. By inputting the difference waveforms between 2-back and 0-
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Figure 4.3: RSs and their corresponding time courses of the group average EEGs. The three
directional time courses of RSs are displayed in the left panel, meanwhile, their locations and
orientations of RSs are presented by using three head views in the right panel. Orientation 1
is the primary orientation of each RS. Four sources were generated to simulate the difference
waves between 2-back tasks and 0-back tasks.

back conditions into Brain Electrical Source Analysis software (BESA 6.0) and aligning

them with the best correspondence between recorded and estimated scalp distribution, we

calculated the source configuration within a realistic head model. The primary orientation

of each RS was set to match the direction of the maximum dipole moment (main current

flow) of the averaged difference ERP waves (Figure 4.3). Subsequently, the resulting RS

model was applied to EEG data during 0-back and 2-back tasks, extracting single-trial

source waveforms for each subject. Furthermore, the activity obtained in the primary

orientation of each RS (orientation 1 in Figure 4.3) was utilized for coherence analysis.

PLC Analysis

For phase locked coherence analysis, a complex Morlet’s wavelet (For computation in

EEGLAB, the number of wave cycles was set to 0.5s, and the lowest frequency time
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window to 0.5 sec) was used to calculate the time-frequency domain:

ωtrial,i(f, t) =

(
1√
πδt

exp
(
−t2/2δ2t

)
exp(j2πft) (4.1)

where ωtrial,i(f, t) is the product of a sinusoidal wave at frequency f and time t during

trial i, with a Gaussian function with a standard deviation δt. We defined the strength

of phase synchrony as phase lock value (PLV,m) between RS l and m with the following

equation [7], [177]:

PLVl,m(f, t) =

∣∣∣∣∣ 1n
n∑

trail=1

exp (i [ωtrail ,l(f, t)− ωtrail ,m(f, t)])

∣∣∣∣∣ (4.2)

where n is the number of available trials. PLVl,m(f, t) is computed by 1Hz steps

from 1Hz to 30Hz. The set of PLVl,m(f, t) is termed Phase Lock Value (PLV) below.

To identify the task-dependent modulation of the PLV, a typical two-sample t test was

applied to test the significant difference of PLV between 0-back and 2-back in terms of

latency and frequency domains. An one-sample t-test was perfor6med on the acquired

t-values from the two-sample t-tests to determine the task-dependent modulation of the

PLV across the subjects [8], [173], [174]. Moreover, 1000 times of bootstrap re-sample We

also measured the directional coherence through phase lag, and the calculation of mean

phase lag between each two sources is:

φ(l,m)(f, t) = angle

{
1

n

n∑
trail =1

exp (i [ωtrail ,l(f, t)− ωtrail ,m(f, t)])

}
(4.3)

A circular bootstrap test was used to test whether the distribution of phase lags across

all sources was significantly different from zero.

GPDC Analysis

As consistent phase lags much smaller than a full oscillatory cycle are suggestive of di-

rectional influences, they are in principle ambiguous because of the cyclic nature of the

signals. We measured the GPDC [176] value among these four generated sources to mea-

sure the directed connections. It can measure causality by predicting one signal from past

values of another signal in terms of the degree (GPDC value). This method based on a

type of P-order Multivariate Autoregressive (MVAR) model:

X(t) =
P∑

p=1

Ap(n)X(t− p) + e(t) (4.4)

where Ap is the autoregressive coefficient matrix with the size of 4×4 and p is time lag,
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P is the maximum number of lags (model order), X(t) is the concatenated matrix of four

source signals at time t, and e(t) is the residual error vector. The MVAR model order P

can be calculated by evaluating and whereM is the number of time series, P is the optimal

model order, N is the time point and σ is the covariance matrix. The MVAR coefficients

can be obtained by two different ways [170]: 1) the mean coefficients of all single-trial

MVAR coefficients, and 2) the MVAR coefficients of the data concatenated from all single-

trial source waveforms. We selected the second way to calculate the MVAR coefficients,

and set each sliding time window as 2000 ms with 50 ms step between successive windows

during different trails and tasks conditions. According to our previous study [170], we

employed Kalman smoother method [183] to figure out the optimal estimator for MVAR

coefficients, which only can rely on previous measurements and inevitable time lag.

The fitted MVAR parameters were then transformed from the time domain into the

frequency domain:

Λl,m(f, t) = I −
P∑

p=1

Ap(t)e
−j2πfp/Fs (4.5)

where I is the p× p identity matrix, with the sampling rate Fs in terms of (l→ m)th

entry, and Λl,m(f, t) were evaluated from 1 ∼ 30Hz at every 1 Hz step. The value of

GPDC then indicating the directional connections among these four sources is calculated

as:

GPDCl→m(f, t) =
|Λl,m(f, t)|√∑M
m=1 |Λl,m(f, t)|2

, l = 1, . . . ,M, m = 1, . . . ,M, (4.6)

where Λl,m(f, t) is the variance of the prediction error for order P . After the calculation

of GPDC, the two sample t-test was used again to identify the significant time-frequency

domain between baseline (0-back) and 2-back. Although 1000 times of bootstrap re-

sample method was employed again and scattered significant areas were drawn with gray

band (95% confidence interval level), we still sorted out the significant area through

5Ö5 median filter, and pick out some obvious time-frequency domains. The bootstrap

method can detect the time-frequency regions, where the GPDC values in 2-back tasks are

significantly different compared to those values in 0-back tasks. To address the problem

of multiple comparisons, the significance level ( p value) was corrected using a False

Discovery Rate (FDR) procedure.
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4.4 Study Results

4.4.1 Behavioral Result

We recorded the subject’s behavioral performance during tasks implementing. In Table

I, both response accuracy (p < 0.001) and reaction times (p < 0.001) of these two tasks

did significantly differ between groups.

4.4.2 Scalp Topography Performance

After group-averaging the waveforms, we employed a contrast between the 2-back and the

0-back (baseline) conditions. Four distinct peaks are evident in Figure 4.2. The initial

peaks manifest at 158 ms and 324 ms, coinciding with a transition in scalp topographic

activity from the left temporo-occipital lobe to the centroparietal lobe. Notably, prefrontal

hyperactivity is observed between 844 ms and 1328 ms, indicating a shift of activated areas

towards major frontal regions. Further details reveal a reduction in frontal potential from

848 ms to 1328 ms, with concurrent activation of the prefrontal, frontal, and temporal

lobes.

4.4.3 Band-Specific Synchrony Reflects

We conducted a thorough examination and validation of communication through phase-

locking synchrony among the four sources depicted in Figure 4.4. Prior to 700 ms, as

illustrated in Figure 4.4a and 4.4b, the connection between S2 and S3 exhibited highly

synchronized coherence, with the left PPC lagging behind the right PFC (mean rel.

phase =-17.20, p < 0.001, r = 0.943, bootstrap test versus zero phase lag; Figure 4.4a

middle panel). This synchronization was prominent in the late theta and early alpha bands

(6 ∼ 11 Hz). Simultaneously, a strongly concentrated phase coherence was observed for

the posterior connection (mean rel. phase =-4.21, p < 0.001, r = 0.875, bootstrap test

versus zero phase lag; Figure 4.4a right panel) in the late beta-band (28 ∼ 29 Hz). In

the phase-locked activities after 700 ms, as depicted in Figure 4.4c and 4.4d, notable

connections include the front connection between S1 and S2 (mean rel. phase =-17.91,

p < 0.001, r = 0.833, bootstrap test versus zero phase lag; Figure 4.4c right upper panel)

during late alpha and early beta bands (11 ∼ 16 Hz), the left lateral connection between

S1 and S3 (mean rel. phase = 11.08, p < 0.001, r = 0.946, bootstrap test versus zero

phase lag; Figure 4.4c left under panel) during the middle beta band (17 ∼ 22 Hz), and

the right lateral connection between S2 and S4 (mean rel. phase = 14.89, p < 0.001,

r = 0.790, bootstrap test versus zero phase lag; Figure 4.4c right under panel) during

early and middle beta bands (14 ∼ 19 Hz, and 21 ∼ 26 Hz).
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Figure 4.4: The phase locked connections among these four sources from 0 ms to 700 ms (a,
b), and from 700 ms to 1600 ms (c, d). (a) Left panel shows the connections under some
particular frequencies, and right panel presents circular statistic angles with their distribution,
circular histograms also illustrate the mean angles of the phase differences between specific two
sources presented (red line). (b, d) t statistical value for the difference in PLV between 2-back
and 0-back tasks for RS pairs across subjects. For example, in the pair of S1 and S3, the PLV
in the 18 Hz ∼ 21 Hz beta band was higher in 2-back tasks with a peak at 20 Hz, green band
is the t value of one-sample t test with 95% confidence interval constructed using the bootstrap
method, and red line is the t value. (c) the connections under some particular frequencies, and
circular statistic angles with their distribution.
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4.4.4 Band-Specific Directionality Reflects

This directed coherence differed in the direction of putative causal influence appears

within whole frequency bands from theta band to beta band. Figure 4.5a illustrates time-

frequency regions exhibiting significantly increased GPDC. The significant time-frequency

domain respectively was presented in Figure 4.5a, and the directed connections accord-

ing to diverse neurocognitive processes were drawn in Figure 4.5b. When 2-back tasks

were compared with 0-back tasks, connection E (150∼300 ms), connection D (550∼700
ms) were detected before responses. After responses, by contrast, Figure 4.5b presents

connection A and F (700∼900 ms), connection C (900∼1100 ms), connection H, B and

G (1300∼1600 ms). There is no significance between 0-back and 2-back tasks after 1600

ms, and the duration is 2000 ms, therefore, the last procedure is neglected in our study.

4.4.5 The Neurocognitive Architecture With Component Pro-

cesses of WM

Drawing insights from recent research [142], [145] utilizing functional Magnetic Resonance

Imaging (fMRI) and electrophysiological methods, Figure 4.6 depicts the involvement of

specific cognitive components. Notably, selective attention manifests during the P300 du-

ration [7], [184], verbal rehearsal is evident [185], sustained activities occur [186], and re-

trieve/readout processes are engaged [145], [187]. Additionally, pattern recognition [186],

memory update and storage [188], and lateral inhibition [142], [145] contribute to the cog-

nitive landscape.Preceding responses, posterior connections play a pivotal role in arousing

selective attention. Bilateral prefrontal regions host rehearsal and retrieve/readout pro-

cesses, while sustained attention and pattern recognition unfold between crossed right-

prefrontal and left-parietal regions, occurring within the 500 ms ∼ 700 ms timeframe

after an initial silent period of approximately 250 ms. Post-responses, sustained attention

and lateral inhibition unfold in the anteroposterior right hemisphere. Simultaneously,

updating and memory encoding processes take place in bilateral prefrontal regions during

the 700 ms ∼ 900 ms interval. From 900 ms to 1100 ms, a repetition of cognitive and

memory components serves to maintain brain activity in visual WM tasks. Between 1100

ms and 1600 ms, sustained attention monitors targeted objects, and lateral inhibition

mitigates the risk of failure.Finally, we propose a novel neurocognitive architecture for

WM processing in Figure 4.7, addressing the gaps in current WM explanations. This

architecture comprises directed arrows and loops, providing a comprehensive depiction of

WM processes.
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Figure 4.5: The directed connections based on the time-varying GPDC. (a) Time-frequency
representations of the time-varying GPDC under 2-back tasks accompanying with significant
grey blocks through two-sample t test between 0-back and 2-back. The bar presents the value of
GPDC. (b) According to directed connections in different latencies, directed color arrows shows
the information flow and their strength thereof. In the earlylatency interval (I: about 150-300
ms E, and II: about 550∼700 D), the cortical contacts mainly include S3→S4 E from 10 to 25
Hz and S2→S3 D, and both of these two indicate the transmission of trigger information. In the
late-latency interval (III: about 700∼900 ms, IV: about 900∼1100 ms, and V: about 1300∼1600
ms), the cortical information was transmitted by S1→S2 A between 12 Hz and 17 Hz, S2→S1
C between 12 Hz and 22 Hz, S4→S2 F between 25 Hz and 30 Hz, S1→S3 B between 1 Hz and
14 Hz, S3→S1 H between 1 Hz and 6 Hz, and S4→S2 G between 17 Hz and 23 Hz.
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Figure 4.6: Schematic explanation of representations to brain networks during WM tasks.
Left upper panel is the location illustration of four fitted sources. A∼E present components
relative to WM in terms of some specific neurocognitive processes. A. During this duration,
selective attention is activated by the trigger of capitals shown on the screen, and this induced
the attention mechanism in PPC cortex. B. Executive and cognitive functions between right
PFC cortex and left PPC region, appear after selective attention being implemented to process
numerical and verbal information. C. The PFC and right hemisphere connections indicate the
update of information flow for memory storing, and lateral inhibition to avoid the failure of
memory representation. D. Persistence of information under WM tasks happens in PFC cortex.
E. The last process for the recall of sustained attention, lateral inhibition to avoid the failure of
attention and memory processing, as well as disinhibition.

4.5 Discussion

In the traditional visual n-back paradigm employed in this study, two coherence methods

were employed to construct the brain network during WM tasks. These methods adap-

tively identified four sources primarily situated in the bilateral prefrontal cortex (PFC)

and PPC, regions associated with functions related to working memory. Specifically, un-

der the condition of 2-back minus 0-back, PLV depicted undirected connections, while

GPDC illustrated directional connections. Remarkably, both coherence methods revealed

a similar network structure. Based on these findings, we proposed a comprehensive model

for the working memory process. The model incorporates unique directional cognitive and

executive connections, along with two regular cognitive and memory maintenance cycles.

Preceding responses, the targeted stimulus initially triggered selective attention in the

parietal regions and was subsequently encoded in visual cortex areas. The beta posterior



CHAPTER 4. BRAIN NETWORKS OFMAINTENANCE, INHIBITION ANDDISINHIBITION DURINGWORKINGMEMORY67

connections in Figure 4.4a and the broad beta directional causality in Figure 4.5b-I in-

dicated the arousal of attention, coinciding with the fixation of the target on the screen.

Contrary to initial speculation, beta oscillations, particularly in terms of selective atten-

tional control, appeared to govern attention and top-down processing [189]. Building on

Eriksson’s suggestion of a core circuit involving fronto-parietal cortical regions sustaining

attention and supporting rehearsal [145], our analysis fused the primary alpha coherence

in Figure 4.4a with the beta directional connection in Figure 4.4b (D). This fusion sug-

gested a rehearsal simulation occurring between the right prefrontal cortex (PFC) and

left posterior parietal cortex (PPC). Despite the different frequency bands employed in

these two methods during rehearsal, the brain network appeared capable of generating

an early-stage simulation rooted in internal reasoning. Consequently, the trigger initi-

ated attention arousal, and the visual cortex encoded the target while transmitting the

representational information to the attention and rehearsal networks.

Figure 4.7: Summary of our proposed neurocognitive architecture for WM. X is the
visual n-back trigger. Before responses, there are attention arouse link (0-1-2), activity
maintenance loop (2-3-2). Attention arouse always accompanies with object encoding to
recognize the type of objects. After response, brain maintenance loop mainly consists of
activity loop (2-3-5-2) and major memory loop (3-5-3), and inhibition or disinhibition
loop (2-3-4-2, 2-3-5-4-2), as the core joint is (4). Inhibition networks are crucial to
guarantee the accuracy of information and activity in brain, meanwhile, disinhibition
circuits are important to restart the following brain activities. Therefore, activity loop
and major memory loop need inhibition component.
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4.5.1 The Maintenance Loop During WM

Frontal regions have been identified as crucial during delay periods, wherein activity

profiles unfold over time [190]. Previous research suggests that sustained frontal brain

responses in working memory tasks are linked to selection mechanisms rather than the

encoding of memory content [191]. Additionally, meta-analyses indicate that the left PFC,

particularly the ventral region, is more associated with WM tasks, while the right PFC

is more involved in spatial WM tasks [149]. In our n-back paradigm experiments, the

directional connection D in Figure 4.4b-II may elucidate the flow of information from the

right PFC to the left PPC. We propose that, in our experiments, the right PFC may have

functioned as a buffer storing information, subsequently read out to facilitate information

selection and comparison during retrieval.

For the maintenance of information or activities in the brain, short-term maintenance

requires sustenance functions to support sustained brain activity during WM tasks. The

period from 300 ms to 550 ms, characterized by a relative absence of significant activities,

suggests a relatively stable activation of the brain during WM execution. Drawing on

cognitive findings [192], [193], we speculate that this ”silent period” from 300 ms to 550

ms may resemble a P300 component. Although our experiment did not delve into the

mechanism of this silent period during WM tasks, we hypothesize that this silence may re-

flect preparatory contributions to subsequent high-level WM processes. Some researchers

propose that after such a ”silent period,” sustained top-down influences transform infor-

mation representations during WM to guide final decisions [166].

The red loop between bilateral PFCs in Figure 4.7 signifies the maintenance of mem-

ory information post-responses. This maintenance loop between left and right PFCs may

activate a self-reminder function, enhancing memory or ensuring necessary brain activity.

Recent fMRI analyses involving older and younger adults performing WM tasks revealed

weaker BOLD signal increases in the Dorsolateral Prefrontal Cortex (DLPFC) among

older individuals during relative maintenance [194]. This study emphasized the need for

both manipulation and maintenance, where attention is directed to transition to the next

position in the alphabet sequence while maintaining the result in working memory. The

yellow loop denotes the enhancement of short-term memory through repeated rewrit-

ing, comparison, and correction. Additionally, the representation of a capital sequence

during WM requires cognitive management to rank at least three capitals in the brain.

While rehearsals can keep information in the brain, sustained performance necessitates

cyclic repetition, possibly relying on auxiliary cortex regions, with the right PFC poten-

tially acting as a compensatory region for memory storage scheduling, temporary storage

preparation, and sustained attention.
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4.5.2 The Inhibition Loop During WM

WM, previously believed to rely on the interplay of recurrent excitation among pyramidal

neurons for sustaining persistent activity through a delay (silent period), as well as lat-

eral inhibition to moderate interneurons and diminish the impact of external distractions

[195]–[197], involves the ability to curtail the activation of functionally similar neurons

within its local environment, particularly through lateral inhibition [198]. In the context

of filtering distractor input, lateral inhibition becomes hyperpolarized when background

noise threatens to influence neuronal firing [199]. Recent insights underscore the role

of lateral inhibition within posterior areas and the prefrontal cortex for resource-limited

descending [198]. Effective performance in tasks involving memory and positive brain

activities necessitates the control of extraneous information or functions. The inhibition

of unnecessary activities is crucial not only for the filtering of distractors but also for the

arousal and maintenance of attention. The observed lateral inhibition following the red

and yellow loops aligns with a recent theory positing that attention and working memory

capacities are constrained by flexible cortical connections that process overlapping in-

hibitory surrounds, potentially leading to internal competition for completing WM tasks

[200].

Instances of forgetting may occur due to an overall decrease in firing frequency resulting

from inadequate inhibition, insufficient to maintain recurrent activity. Our experimental

evidence weakly supports the notion of prefrontal lateral inhibition during WM, particu-

larly after the delay period, aiming to preserve memory representations and prevent the

shifting of brain attention and task-focusing functions. Nevertheless, we speculate that

lateral inhibition may more frequently induce cognitive stagnation, causing a deadlock in

information maintenance, brain responses, and the activation of subsequent positive or

negative neuron circuits.

To initiate subsequent brain activities, disinhibition becomes crucial, especially as the

delay period increases. This mechanism is supported by a study on schizophrenia during

spatial WM experiments [199]. Cortical disinhibition’s effect on WM may serve as the

switch to activate the next loop of maintenance or brain activity, as the absence of disin-

hibition could lead to disorder during the implementation of a specific WM component.

4.5.3 Conclusion And Future Directions

We have elucidated the phase lock and directional connections among four adaptively

fitted sources to conduct noninvasive coherence analysis. Building upon the established

architecture of WM, we have proposed a detailed network model encompassing mainte-

nance and inhibition. This model underscores the significance of disinhibition, particu-
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larly highlighting its partial functions in bilateral PPC regions. The analysis of this model

yields several key findings: (i) Bilateral Prefrontal Cortex (PFC) and PPC are crucial in

WM tasks, contributing to attention, rehearsal, recognition, inhibition, and disinhibition;

(ii) The right PFC acts as a facilitator for the left PFC, enhancing the high-capacity

implementation of WM tasks; and (iii) Following inhibition for maintenance in the brain

(in one loop to enhance memory or sustain positive activities), disinhibition unlocks the

inhibitory function, activating subsequent brain functions. In our future work, we will

concentrate on identifying abnormal connections and addressing the unbalanced WM ob-

served in depressed patients.



Chapter 5

InA: Inhibition Adaption On

Pre-trained Language Models

Fine-tuning pre-trained language models (LMs) may not always be the most practi-

cal approach for downstream tasks. While adaptation fine-tuning methods have shown

promising results, a clearer explanation of their mechanisms and further inhibition of

the transmission of information is needed. To address this, we propose an Inhibition

Adaptation (InA) fine-tuning method that aims to reduce the number of added tunable

weights and appropriately reweight knowledge derived from pre-trained LMs. The InA

method involves (1) inserting a small trainable vector into each Transformer attention

architecture and (2) setting a threshold to directly eliminate irrelevant knowledge. This

approach draws inspiration from the shunting inhibition, which allows the inhibition of

specific neurons to gate other functional neurons. With the inhibition mechanism, InA

achieves competitive or even superior performance compared to other fine-tuning methods

on BERT − large, RoBERTa− large, and DeBERTa− large for text classification and

question-answering tasks.

5.1 Introduction

Fine-tuning, the process of updating the parameters of pre-trained LMs, has proven to

be an effective approach for various downstream NLP tasks. However, classical fine-

tuning methods suffer from the issue of redundant parameters in fully pre-trained models,

which can lead to inefficiencies when adapting to new downstream tasks. To tackle this

problem, prior studies have attempted to adapt only specific vectors or learn additional

parameters while keeping most of the pre-trained parameters fixed. This allows for better

operational efficiency by loading task-specific parameters associated with the pre-trained

models before deployment. Low rank adaption (LoRA) ([52]( has successfully achieved

71
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this goal and addressed the inference latency problem, which helps extend model depth or

reduce the usable sequence length of models ([53]–[55]) to find a balance between efficiency

and quality. The challenges in fine-tuning pre-trained LMs for NLU downstream tasks

lie in reducing the number of tuned weights and appropriately approximating the update

of pre-trained weights derived from the LMs ([52], [53], [55], [56]). Properly selecting

knowledge from pre-trained LMs is crucial to address these challenges. The question

arises as to why we cannot directly inhibit ”redundant” knowledge during fine-tuning

while retaining relevant information.

Drawing inspiration from the efficiency demonstrated in neural networks by [201], and

the concept of low ’intrinsic rank’ in weight changes during model adaptation proposed by

LoRA ([52]), we propose our approach called Inhibition Adaptation (InA). Our hypothesis

is that by partially inhibiting the intrinsic rank, we can eliminate the influence of irrelevant

’intrinsic parts’ in the model. As shown in Figure 5.1, InA is similar to LoRA as it

optimizes rank decomposition matrices while keeping the pre-trained weights frozen. InA

gates the passing information from the “internal” aspect, namely, by setting one threshold

to control the passing information. However, LoRA gates the passing information from the

’external’ aspect, that is, compressing the information using a low rank mechanism. Go

further, InA introduces an additional threshold that weakens one part of the adaptation

vector (Winhibition). In the case of pre-trained language models, the inhibition vector is

then used to reweigh irrelevant knowledge while retaining useful information through the

non-inhibited part.

Figure 1.4 illustrates a practical example demonstrating the effectiveness of the pro-

posed Inhibition Adaption in eliminating answer-irrelevant parts of the intrinsic rank,

such as ’I’ and ’My’. We hypothesize that the distribution of this intrinsic rank resembles

a Gaussian-like distribution with a concentrated center and two sparse tails. In order to

reduce the influence of task-irrelevant features during fine-tuning of pre-trained language

models (LMs), InA removes one tail by subtracting a proper threshold. The contributions

of InA are as follows:

(a) InA effectively inhibits irrelevant information during fine-tuning on downstream

tasks like GLUE and SQuAD, enabling the model to focus more on task-related informa-

tion and eliminating the impact of irrelevant knowledge.

(b) InA benefits from proper activation functions with relatively flat negative tails.

GeLU or LeakyReLU, which have small negative tails, outperform other activation func-

tions like ReLU. SELU and ELU, with long and upturned tails, do not perform as well

with InA.

(c) InA shares the same trainable parameter with LoRA, enabling it to inherit the

knowledge compression ability from LoRA. Additionally, InA gains the capability to sup-
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Figure 5.1: Illustration of the transformer architecture and our proposed parameter-
efficient tuning method: inhibition adaption.

press task-irrelevant knowledge by subtracting a threshold.

5.2 Problem Statement

In the prior work of LoRA [52], authors only used the similarity matrix to compare

the difference between LoRA fine-tuning and fully fine-tuning methods. There is no

straight forward visualization result that can show us which part has been tuned by

such methods. In addition, when using LoRA fine-tuning method on LMs, we found

that although the low rank ”bottleneck” can compress information and reweight the pre-

trained parameters, such compressed information always contains noise and task-irrelevant

knowledge. As shown in Figure 1.4, we present an example: input = [’I put my red

bag in the black bag. What is the colour of my bag ?’], target = [’red’]. When the

threshold is 0, InA will become to LoRA, as InA also uses low rank to compress the

passing information. The target-irrelevant knowledge in this case includes pronouns (e.g.,

I, my, and what), nouns (e.g., bag), verbs (e.g., put), definite articles (e.g., the), and

adjectives (e.g., black and colour). Both full FT and adaption FT methods still retain this

target-irrelevant information, which can distract the model from focusing on the actual

target knowledge. When the target is specified as [’red colour’], the relevant knowledge

should be the adjective ”colour.” Figure 1.4 is a cross attention map, and it presents the

“word connection” between the column and the row word lists. The “word connection”
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between “I” and “red” is reasonable, but the most important “word” should be “red”. To

make attention layers pay more attention to most important “words”, that means making

attention layers more concentrated, the noise words, such as “I” should be inhibited.

Therefore, it is essential to eliminate such target-irrelevant information to ensure the

model’s output is more concentrated on the desired target. On the right-hand side of

Figure 1.4, InA is introduced as a method to reduce the influence of the target-irrelevant

knowledge, such as the pronoun ”I.”

Figure 1.4 shows a practical example using InA in the BERTlarge model, which has

been fine-tuned under question-answering datasets. Left panel explains the potential risk

of LoRA, and right panel presents the visualization of the attention score on last attention

layer based on prior work [202]. The text is ’I put my red bag in the black bag.’,

and the question is ’What is the colour of my bag?’, Therefore, the answer should

be ’red’. There are two colours: red and black. Classical fine-tuning and adaption fine-

tuning methods, such as LoRA, on downstream NLU tasks tend to choose the proper

features from the entire ’redundant’ feature pool. This cannot essentially eliminate the

influence of task-irrelevant words, for example, ’I’ and ’My’. After five epochs of InA

fine-tuning, our inhibition vector can learn an incomplete intrinsic rank whose sole tail

was eliminated by InA. Finally, activated by GeLU, which has a small negative tail, this

incomplete intrinsic rank can provide the pre-trained weights with a small negative vector.

Thus, these answer-irrelevant parts—’I’ and ’My’—in the intrinsic rank will be weakened

or eliminated (see red stars in the right panel). We finally conclude that after InA fine-

tuning, attention layers will pay less attention to such task-irrelevant information.

5.3 Explanation of Shunting Inhibition

5.3.1 Shunting Inhibition (Gate with Inhibition)

The design of a gated structure with inhibition draws inspiration from the shunting inhi-

bition mechanism ([1], [203], [204]). The left panel in Figure 5.2 illustrates how shunting

inhibition works, with its on (the red box) and off (the green box) states. When the gate

of shunting inhibition is off, the signal transmission occurs across the joint, which can be

influenced by shunting synapses. These shunting synapses play a crucial role in regulating

neuronal function, and their activation can affect signal reception and transmission. In

the context of ANNs, shunting can be described and interpreted as a gating mechanism

in most articles, but researchers have often overlooked the inhibitory mechanism in the

past. Shunting inhibition employs the shunting mechanism to select active neuron units,

with its primary function being the selection, weakening, or strengthening of quantized
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features in ANNs.

In contrast to excitatory synapses, certain neurotransmitter-gated ion channels can

direct the postsynaptic potential towards the resting potential or inhibit the effects of

excitatory synapses ([203]). Such synapses are collectively referred to as ’inhibitory’. An

example of inhibitory synapses involves the neurotransmitter GABA, which has both a

fast receptor known as GABAA and a slower receptor called GABAB. Additionally, the

neurotransmitter dopamine has several receptor types, some of which are excitatory and

some inhibitory. Inhibition can be subtractive, as it reduces the membrane potential, or

divisive, as it modulates the effect of excitation. For instance, GABAA receptors have

no effect on the membrane potential when it is at rest, so they do not further reduce

the potential. Inhibitory synapses located close to the cell body can have modulatory

(multiplicative) effects on the summed Excitatory Postsynaptic Potentials (EPSPs).

5.3.2 Membrane Potentials and Threshold

In Figure 5.2, the right panel illustrates the rationale behind setting the threshold between

10% and 30%. The red line represents the threshold for inhibition, and the membrane

potentials typically range from −70mV to +30mV . Considering the inactivated range

of membrane potentials, we choose a threshold of approximately 15% (within the range

of 10% to 30%). Not all neurons can act in the same way, and some may have a lower

threshold of 1–5%. When the voltage exceeds the threshold, depolarization occurs fol-

lowing the activation. We assume that the distribution of activated features in artificial

neural networks follows a Gaussian-like pattern. Commonly used activation functions like

Softmax (Softmax), Tanh (Tanh), Rectified Linear Unit (ReLU) ([205]), Parametrised

ReLU ([206]), Exponential Linear Unit (ELU) ([207]), Self-Gated Activation Function

(Switsh) ([208]), Gaussian Error Linear Unit (GeLU) ([209]), and Scaled Exponential

Linear Unit (SELU) ([210]) directly activate all features. However, to avoid the influence

of unimportant features, those whose activated values fall below the threshold should

be inhibited. These features have little significance for specific tasks, as the pre-trained

model already provides highly quantized features for downstream fine-tuning tasks.

5.4 Related Work

5.4.1 Transformer-based language models

Heavily relying on the self-attention mechanism, Transformer ([211]), a sequence-to-

sequence architecture, has dominated NLP and become SOTA for many tasks. Explor-

ing the mechanism of scaling Transformer (by scaling model size, dataset size, model
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Figure 5.2: Inspiration from Neuroscience: Gate With Inhibition.

shape, context length and batch size), which was encouraged by the scaling law ([212]),

has accelerated the capacity of various language models, such as BERT ([213]–[216]),

RoBERTa ([217]), A Lite BERT (ALBERT) ([218]), DeBERTa ([219], [220]), sparse

Switch-Transformer-1.6T ([221]) and Swin-Transformer ([222], [223]). Over the years,

the capacity of language models has seen a dramatic thousandfold improvement. Tak-

ing single-head attention as an example, the self-attention operation with bias can be

formulated as ([211], [216], [219], [222]):

Q = HWq + bq, K = HWk + bk, V = HWv + bv (5.1)

A =
QKT

√
D

, (5.2)

Ho = softmax(A+ ba)V, (5.3)

whereH ∈ RM×d represents the input hidden vectors; Ho ∈ RM×d is the output of the self-

attention; Q,K, V ∈ RM×d are the Query,Key and V alue matrices; Wq,Wk,Wv ∈ Rd×d

are the projection matrices; A ∈ RM×d is the attention matrix; M is the length of the

input sequence; ba, bq, bk, bv ∈ RM×M are the relative position bias terms for each head

and D is the dimension of hidden states.

5.4.2 Fine-tuning on NLP downstream tasks

Current SOTA systems for NLP tasks are based on the fine-tuning of pre-trained LMs.

Classical fine-tuning methods should retrain the pre-trained model, which has been trained

on general domains to fit a specific task ([213]). To maximise the downstream perfor-

mance, variants of the vanilla Transformer (e.g., merely learning a subset of the parame-

ters) compel practitioners to retrain allLM weights. For other conditional NLP tasks, such

as question answering and dialogue generation, fine-tuning is also the prevalent paradigm

([219], [224]). In this paper, we focus on text classification, question answering and text
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adversarial generation tasks, as well as the three most frequently used pre-trained LMs:

BERT, RoBERTa and DeBERTa. However, due to the large checkpoint and the high

hardware barrier to entry, the enormity of these pre-trained LMs makes it challenging to

perform fine-tuning in the usual way.

5.4.3 Parameter-Efficient Fine-Tuning

Adapters Tuning. The adapter tuning mechanism inserts several vectors (adapters)

between transformer layers ([56]). The adapter module uses two projections, Wdown ∈
Rd×k and Wup ∈ Rk×d, first, to project Ho to a lower-dimensional space specified by the

bottleneck dimension k, which is followed by a nonlinear activation function f(·), second,
to project the computed product back with up-projection Wup. The final output of Ho

after using adapters is:

Ho ← Ho + f(HWdown)Wup. (5.4)

One more efficient adapter variant ([225]) has been proposed, and it is inserted a Forward

Neural Network (FNN) only after the ’add and layer norm’ sub-layer.

Prefix and Infix Tuning. Prefix tuning prepends l tunable prefix vectors to the keys

and values of the multi-head attention on every layer ([53]). By respectively concatenating

or inserting two prefix vectors, Pk ∈ RM×p and Pv ∈ RM×p (p is the length of the inserted

vector), to the head or middle of the original projection matrices K and V , new prefixed

or infixed Keys and V alues in the multi-head attention can be formed as:

W
(i)
k : prefix = concat(P

(i)
k , CW

(i)
k ), (5.5)

W (i)
v : prefix = concat(P (i)

v , CW (i)
v ), (5.6)

W
(i)
k : infix = insert(CW

(i)
k , I

(i)
k ), and (5.7)

W (i)
v : infix = insert(CW (i)

v , I(i)v ). (5.8)

Given a sequence of m vectors, C ∈ RM×d, over which we would like to perform attention,

multi-head attention performs the attention function in parallel on Nh heads. Pk, Pv, Ik

and Iv are respectively split into Nh head vectors. P
(i)
k , P

(i)
v , I

(i)
k and I

(i)
v ∈ RM×p denote

the i-th head vector. W
(i)
k and W

(i)
v ∈ RM×(p+d) denote the i-th prefix (or infix) head

vector.

LoRA Tuning. LoRA injects trainable low-rank matrices into transformer layers to

approximate the weight updates ([52]). By using a low-rank decomposition W0 + ∆ =

W0 + BA, where B and A is respectively Wdown ∈ Rd×r and Wup ∈ Rr×k, LoRA updates

the query and value projection matrices (Wq,Wv) in the multi-head attention sub-layer.
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For the specific hidden input H, LoRA modifies the projection output Ho as:

Ho ← Ho + s · f(HWdown)Wup, (5.9)

where s ⩾ 1 is a tunable scalar hyperparameter.

Others. Other parameter-efficient tuning methods include BitFit ([226]) which only

fine-tunes bias vectors in the pre-trained model, diff-pruning ([227]) which learns a sparse

parameter update vector, GLoRA ([228]) which generalizes the LoRA and QLoRA ([229])

which quantizes the LoRA with 4 or 8 bits.

5.4.4 Threshold and Inhibition

The threshold mechanism has been mostly used in deep SNNs ([201], [230]). A higher

threshold will prevent the neuron from firing (’dead-neuron’ problem), and a lower thresh-

old will cause excessive firing. Both affect the ability of the neuron to differentiate between

these two input patterns ([231]). The firing thresholds are also fixed ([232]) or selected

based on some heuristics ([230], [233]). The threshold was selected as the maximum pre-

activation of each layer in [230]. [233] selected a certain percentile of the preactivation

distribution as the threshold. Some recent works employ leak/threshold optimisation,

but their application is limited to simple datasets ([234]). Most of these articles applied

a threshold to SNNs, but they are facing the challenge of proposing improper methods

of selecting the membrane leak and the threshold. To our best knowledge, there is no

example of applying inhibition to a Transformer architecture.

5.5 Inhibition Adaption

InA, consists of a stack of gate blocks with an additional inhibition. The gate block can

determine which features should be focused on, and inhibition can control the opening level

of the gate. In this article, we use different inhibition-level percentiles Inhp on different

downstream tasks. Specifically, we set Inhp = 0.3 when fine-tuning text classification and

Inhp = 0.9 when fine-tuning question answering and text adversarial generation tasks. In

Figure 1.4, there is an example which illustrates how InA works and how it can inhibit

the attention score when fine-tuning the question-answering task.

5.5.1 Inhibited Adaption

InA also inserts trainable inhibition matrices into transformer layers to approximate the

weight updates. By using a low-rank decomposition W0 + ∆ = W0 + Wdown, where
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Wdown ∈ Rd×r, Wup ∈ Rr×k, Th ∈ R1×r, InA updates the Query and Key projection

matrices (Wq,Wk) in the multi-head attention sub-layer. For the specific input H, InA

modifies the projection output Ho as:

Ho ← Ho + s · f(HWdown − Th)Wup, (5.10)

where s ∈ {0, 1} is a tunable scalar hyperparameter, and Th is the threshold.

Notation. We denote input hidden vectors as H ∈ RM×d and the output of self-

attention as H̄o ∈ RM×d. Wk,Wq,Wv ∈ Rd×d are the projection matrices.

Motivation. The motivation of InA on Transformer is to assemble a flexible gate

with an adjustable inhibition vector to fine-tune downstream tasks. In addition, it should

be able to automatically learn to rarefy tense features without sparsity settings. Under

transfer learning, pre-trained language models can provide features for downstream tasks.

The inhibition vector with a gate mechanism can learn to adjust and inhibit the provided

features, and it finally makes tunable weights fit into a specific downstream task by fine-

tuning. We formulate the linear InA layer as:

Ik = f(HWk down − Thk)Wk up, (5.11)

Iq = f(HWq down − Thq)Wq up, (5.12)

where Ik ∈ RM×d and Iq ∈ RM×d, respectively, is the Inhibition matrix in Key side and

Query side; f is the activation function; Thk is the product of max(HWk down) × Inhp

and Thq is the product of max(HWq down)× Inhp.

5.5.2 Inserting InA into Transformer

How shall we further adjust the adaptivity of LMs? And how do we select befitting features

in such a huge feature pool after the pre-training? By using subtraction (- threshold Thq),

we propose Equation 5.11 and Equation 5.12, which have prejudice towards processing

the features selection and can abandon features whose activated values are negative. With

the use of inhibition, as shown in the right panel of Figure 1.4, the extra knowledge about

’I’ and ’my’ in the red box has been inhibited or removed. Under the application of

the GeLU activation function, Ik and Iq will cut off the long negative tail to keep the

concentrated features. This prejudice towards abandoning useless and counterproductive

features will provide attention blocks with the ability to process dense features during

fine-tuning.

The next step is to insert InA into Transformer attention blocks. Following the above
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Table 5.1: Hyper-parameters for fine-tuning BERT, RoBERTa and DeBERTa with inhib-
ited gate MLPs mechanism on down-streaming tasks.

Hyper-parameter BERT(large) RoBERTa(large) DeBERTa(large)
Dropout of task layer 0.15 0.15 0.15
Warmup Steps 100 100 100
Learning Rates 5e-6 5e-6 5e-6
Batch Size {16,32,64} {16,32,64} {16,32,64}
Weight Decay 0.01 0.01 0.01
Epochs 5 10 10
Learning Rate Decay Linear Linear Linear
Optimizer AdamW AdamW AdamW
Adam ϵ 1e-6 1e-6 1e-6
Adam (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Gradient Clipping 1.0 1.0 1.0
Inhibition Percentile (0.0, 0.1, 0.3, 0.9) (0.0, 0.1, 0.3, 0.9) (0.0, 0.1, 0.3, 0.9)

elaboration, we formulate the linear InA on Transformer as:

V = HWv + bv, K = HWk + bk, Q = HWq + bq, (5.13)

Bk = K + Ik, Bq = Q+ Iq, Ākq =
BqB

T
k√

D
, (5.14)

H̄o = softmax(Ākq + bā)V, (5.15)

where V ∈ RM×d is the V alue matrix; Bk, Bq ∈ RM×d are respectively Key and Query

matrices with InA MLPs; Ākq ∈ RM×d is the attention matrix with InA MLPs and

bā ∈ RM×M is the relative position bias term for each head with InA MLPs.

Equations 5.13 and Equations 5.15 have the same form as the vanilla Transformer

attention. They produce the Key, Query and V alue projection matrices to represent the

attribute of contexts. To select proper features that should be used to fit downstream tasks

during fine-tuning, and to again modify the attribute of input contexts whose distribution

should tend to fit target tasks, Equations 5.11 and Equations 5.12, on the one hand, utilise

Ik and Iq to adjust projection matrices K and Q on a small-scale and, on the other hand,

keep or enhance the important attributes of contexts relying on the addition between K

and Ik (Q and Iq).

5.6 Experiments

5.6.1 Experiment Settings

Our experiments only depend on single-task fine-tuning. Our code is implemented based

on the Huggingface Transformer ([235]). Following prior studies of language models ([52],

[227]), we report results using large models. We use 8 × NVIDIA Tesla A100 with 40GB

graphic memory cards to fine-tune the pre-trained models. Code and models are available

at: https://github.com/ChengKang520/gate-with-inhibition.

https://github.com/ChengKang520/gate-with-inhibition
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5.6.2 Evaluation Datasets

This section evaluates the performance of InA in terms of downstream tasks on BERT −
large ([218]), RoBERTa− large ([217]) and DeBERTa− large ([219], [220]). Whether

natural language understanding, question answering or generation, specifically, the bench-

mark GLUE ([236]), SQuAD v1.1 ([237]), SQuAD v2.0 ([237]) and SWAG ([238]), we

followed the adapter fine-tuning setup ([225]) on RoBERTa− large for a direct and fair

comparison. Refer to Table 5.1 for detailed hyperparameters.

5.6.3 Fine-Tuning Implementation Details

Settings. Following BERT ([213]), RoBERTa ([217]) and DeBERTa ([219]), we adopt

dynamic data batching. We also include span masking ([239]) as an additional masking

strategy with a span size of up to three. For fine-tuning, we use Adam ([240]) as the

optimiser for a fair comparison, and we train each task with a hyperparameter search

procedure—each run takes about 1–2 hours on a DGX-2 node. All the hyperparameters

are presented in Table 5.1. The model selection is based on the performance of the

task-specific sets.

Our experiments are under fine-tuning on downstream tasks. Firstly, we set the in-

hibition percentile as 0% to test whether the result is similar to the settings without

inhibited gate MLPs. Secondly, we set the inhibition percentile as 10% or 90% according

to the performance of the first step. Finally, if the result, when the inhibition percentile

is 10%, becomes better, we will set the inhibition percentile as 30%. If not, we will set

the inhibition percentile as 90%.

5.6.4 Results

We summarise the efficiency performance of adaption FT methods and InA in Table

5.2. In addition to comparing with different adaption methods, by inserting InA into

BERT−large, RoBERTa−large and DeBERTa−large, we also summarise the results

on eight NLU tasks of GLUE ([236]) in Table 5.3, as well as question answering – SQuAD

v1.1 ([237]), SQuAD v2.0 ([241]) and Text Adversarial Generation: SWAG ([238]) in Table

5.4. In Table 5.5, we compare the performance of InA on the GLUE development set when

fine-tuning BERT − large with five epochs over five different activation functions. We

also summarise the performance of different inhibition levels on these three large language

models in Table 5.6.
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Efficiency: Trainable Parameters and Speed

Additionally, we would like to discuss the efficiency gains of InA, such as the reduction in

trainable parameters, and back-propagation speed and inference (complexity). We treat

Wq (or Wk, Wv) as a single matrix of dimension d × d. We denote the number of the

prefix (resp. infix) tokens as lp (resp. li). r is the low-rank mechanism that controls

the bottleneck. In Table 5.2, the activation function of adapters and LoRA is ReLU;

Prefix uses Softmax; and InA uses Leaky Rectified Linear Unit (LeakyReLU). Eventually,

InA shows the fewest tunable parameters but the same inference complexity when using

LeakyReLU. In Table 5.1, LeakyReLU has no obvious average gap with GeLU, because

they almost have the same function and derivative waveform.

Table 5.2: The efficiency of InA and other adaptation FT methods in terms of trainable
parameters, update speed (back-propagation) and inference (complexity).

Methods Tunable Params Inference Update Speed

Fully FT T1 = 3× L× d2 T1 O(2n), GeLU
Adap FT T2 = 2× d× r + r + d T1 + T2 O(n2), ReLU
Prefix FT T3 = d× (lp + li) T1 + T3 O(2n), Softmax
LoRA FT T4 = 2× d× r T1 + T4 O(n2), ReLU

InA FT T5 = 2× d× r T1 + T5
O(n2), LeakyReLU
O(2n), GeLU

5.6.5 Effectiveness: InA on Fine-tuning

Table 5.3: Comparison results of fine-tuning the GLUE development set on BERT−large,
RoBERTa−large, DeBERTaV 2−large andDeBERTaV 3−large with InA (inhibition
level percentile is 0.3). † indicates runs configured in a setup similar to [56] for a fair
comparison.

Model-large & Method
#Train

#Trainable
Parameters

CoLA
Mcc
8.5k

QQP
Acc
364k

MNLI
Acc
393k

SST2
Acc
67k

STS-B
Corr
7k

QNLI
Acc
108k

RTE
Acc
2.5k

MRPC
Acc
3.7k

Avg.

BERT [213] 336.0M 60.6 91.3 86.6 93.2 90.0 92.3 70.4 88.0 84.5
BERT [FT] � 336.0M 64.0 91.3 86.2 93.8 88.9 92.6 71.4 86.6 84.35
BERT [LoRA] � 0.8M 64.2±0.7 91.4±0.2 86.2±0.2 94.2±0.2 89.2±0.2 92.7±0.1 69.2±1.4 84.9±1.3 84.01
BERT [InA] � 0.4M 65.9±0.6 91.5±0.1 86.3±0.2 94.4±0.2 89.0±0.2 92.7±0.1 69.0±1.6 84.8±1.1 84.19
RoBERTa [217] 355.0M 68.0 92.2 90.2 96.4 92.4 93.9 86.6 90.9 88.82
RoBERTa [FT] � 355.0M 68.1 92.2 90.2 96.3 92.3 93.9 86.6 90.9 88.56
RoBERTa [Adpt]�[225] 0.8M 67.8±2.5 91.7±0.2 90.5±0.3 96.6±0.2 91.9±0.4 94.8±0.3 80.1±2.9 89.7±1.2 87.9
RoBERTa [Adpt]�[56] 0.8M 66.3±2.0 91.5±0.1 90.3±0.3 96.3±0.5 91.5±0.5 94.7±0.2 72.9±2.9 87.7±1.7 86.4
RoBERTa [LoRA]�[52] 0.8M 68.2±1.9 91.6±0.2 90.6±0.2 96.2±0.5 92.3±0.5 94.8±0.3 85.2±1.1 90.2±1.0 88.6
RoBERTa[InA] � 0.4M 68.5±1.2 92.2±0.1 90.2±0.4 96.4±0.3 92.0±0.3 94.4±0.4 85.2±0.7 90.8±0.5 88.7
DeBERTaV2 [219] 304.0M 70.5 92.3 91.1 96.8 92.8 95.2 88.3 91.9 90.00
DeBERTaV3 [220] 304.0M 75.3 93.0 91.8 96.9 93.0 96.0 92.7 92.2 91.37
DeBERTaV3 [FT] � 304.0M 74.3 93.0 91.0 96.2 92.6 95.4 90.3 90.7 90.44
DeBERTaV3 [LoRA] � 0.8M 75.6±1.2 93.1±0.1 91.0±0.2 96.6±0.3 92.8±0.2 96.0±0.1 91.2±0.7 92.9±0.2 91.15
DeBERTaV3 [InA] � 0.4M 76.4±1.0 93.2±0.1 90.9±0.3 96.6±0.4 93.2±0.2 96.1±0.1 90.7±0.8 93.1±0.2 91.28

Our settings for BERT − large and DeBERTa − large on InA are, respectively,

similar to the input/output protocol for BERT ([213]) and DeBERTa ([220]) fine-tuning.

Our settings for InA fine-tuning on RoBERTa − large are, respectively, similar to the

adaption fine-tuning method ([52], [225]).



CHAPTER 5. INA: INHIBITION ADAPTION ON PRE-TRAINED LANGUAGEMODELS83

Table 5.4: Comparison results of fine-tuning SQuAD v1.1, SQuAD v2.0 and SWAG on
BERT − large, RoBERTa − large, DeBERTaV 2 − large and DeBERTaV 3 − large
with InA (inhibition level percentile is 0.9). ⋆ indicates being run under the original con-
figuration for a fair comparison. (Note that missing results in the literature are signified
by ‘-’).

Model-large
& Method
#Train

# Trainiable
Parameters

SQuAD
v1.1

F1/EM

SQuAD
v2.0

F1/EM

SWAG
Acc

BERT [213] 336.0M 90.9/84.5 81.8/79.0 88.6
BERT [FT] ⋆ 336.0M 91.3/84.5 81.7/78.4 86.5
BERT [LoRA] ⋆ 0.8M 91.3/84.5 81.7/78.4 86.5
BERT [InA] ⋆ 0.4M 91.3/84.6 81.5/78.1 86.7
RoBERTa [217] 355.0M 94.5/88.9 89.4/86.5 89.9
RoBERTa [FT] ⋆ 355.0M 94.1/88.4 88.9/86.0 88.9
RoBERTa [LoRA] ⋆ 0.8M 94.4/88.7 88.8/86.0 88.9
RoBERTa [InA] ⋆ 0.4M 94.7/89.2 89.1/86.3 88.9
DeBERTaV2 [219] 304.0M 95.5/90.1 90.7/88.0 90.8
DeBERTaV3 [220] 304.0M - 91.5/89.0 93.4
DeBERTaV3 [FT] ⋆ 304.0M 95.4/89.8 91.5/89.0 93.3
DeBERTaV3 [LoRA] ⋆ 0.8M 95.3/89.9 91.5/89.0 93.2
DeBERTaV3 [InA] ⋆ 0.4M 95.4/90.0 91.6/89.0 93.3
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Figure 5.3: Plots of corresponding metrics according to the number of epochs on the
validation split of GLUE, SQuAD v1.1, SQuAD v2.0 and SWAG. The giBERT means
inserting InA (gate inhibition mechanism) into BERT.

5.6.6 InA on the Text Classification Task

We summarise the comparison results on these eight NLU tasks in Table 5.3 in terms of

fine-tuning the architecture of inserting InA into the original BERT− large RoBERTa−
large and DeBERTa− large. In Table 5.3, when using BERT − large as the base, the

average cannot catch up with the performance of using the classical FT method, but

InA fine-tuning outperforms the classical FT method on six out of eight tasks. Although

RoBERTa−large with InA fine-tuning merely shows the fine-tuning advantage on Corpus

of Linguistic Acceptability (CoLA), Quora Question Pairs (QQP) and Microsoft Research

Paraphrase Corpus (MRPC) tasks, it can achieve the highest average result. Figure 5.5

shows the attention heatmap when using InA to fine-tune the GLUE tasks. Fine-tuning
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DeBERTaV 3 − large with InA on GLUE can get five out of eight better results, even

though it also cannot achieve a better average. From Table 5.3, we can find that when

fine-tuning Recognizing Textual Entailment (RTE) and MRPC under InA, BERT−large
and RoBERTa− large cannot always get a better performance than other FT methods.

The inferred reason is that the extra tunable parameters cannot be efficiently fine-tuned

with small data.

InA on the Question Answering Task

As we use three large language models as the baseline, BERT− large, RoBERTa− large
and DeBERTa − large, when fine-tuning with InA on SQuAD v1.1 and SQuAD v2.0

([237]), we can find a weak improvement in Table 5.4. Moreover, the obviously dominant

part is that InA inhibits the ‘irrelevant knowledge’ (e.g., ‘I’ and ‘my’) when Inhp = 0.9

(See Figure 5.6). We infer that InA inhibits the information that has a relationship with

the label (the label is ‘red’), for example, the word ‘my’ in the phrase ‘my red’. That is

why InA can achieve relatively better results on the SQuAD task.

InA on the Multi-Choice Generation Task

In Table 5.4, for the SWAG text generation dataset ([238]), which introduces the task of

grounded commonsense inference, unifying natural language inference and commonsense

reasoning, we find there is no fine-tuning improvement. In Figure 5.10, the input is ‘she

opened the hood of the car’. Humans can reason about the situation and anticipate what

might come next (the label is ‘then, she examined the engine’). The inhibitor can reduce

the influence of some information, but the reason why such ‘unimportant knowledge’ is

required for the SWAG task is still not clear. We will perform more experiments to figure

out the reason why InA cannot benefit SWAG in our future work.

Different Activation Functions on InA

We summarise the results of using different activation functions after setting the inhibition

percentile at 30% in Table 5.5. When compared with other activation functions whose

tails are zero or negative, the GeLU activation function, whose negative tails are short,

achieves the best improvement of QQP, Stanford Sentiment Treebank (SST2), Stanford

Question Answering Dataset (QNLI), MRPC and GLUE averages. Although LeakyReLU

with a default slope gets outstanding performance on CoLA and RTE, the total effect

on GLUE tasks is inferior to GeLU. LeakyReLU can provide more stable and smoother

negative values, and this could be the reason why LeakyReLU can outperform GeLU on

these two small downstream GLUE tasks. The negative value deriving from LeakyReLU
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Table 5.5: When using different activation functions, we set the inhibition level percentile
at 0.3 and present the comparison results on the GLUE development set within five epochs
fine-tuning based on BERT − large.

Model-large
#Train

BERT(30%)
GeLU SELU ELU LeakyReLU ReLU

Functions

CoLa (Mcc) 65.9 62.1 62.8 66.6 64.3
QQP (Acc) 91.5 63.2 63.2 91.4 91.4
MNLI (Acc) 86.3 35.4 35.5 86.3 86.3
SST2 (Acc) 94.4 50.9 92.9 93.6 93.1
STS-B (Corr) 89.0 32.0 77.0 88.9 89.3
QNLI (Acc) 92.7 50.5 92.0 92.3 92.3
RTE (Acc) 69.0 54.9 52.7 70.0 68.6
MRPC (Acc) 84.8 68.4 77.2 84.3 83.8
Avg. 84.20 44.41 69.15 84.18 83.64

activation would provide a stronger inhibition for BERT or variants of BERT (RoBERTa,

DeBERTaV2 and DeBERTaV3). GeLU has a short and tender negative tail, and we

eventually select it as the default activation function.

In Table 5.5, every activation function has its negative tail, except ReLU. Because the

inhibition vector has subtracted one inhibition variable through the GeLU and LeakyReLU

activation functions, some variables become negative, and the output of the inhibition

layer at the end has more negative variables if setting Inhp higher. Thus, we can slightly

‘reweight’ the Q and K matrices with this inhibition vector. The worse performance of

SELU can be a contrary example because it has an upturned tail which provides bigger

negative outputs.

Inhibition Level in InA

Table 5.6: Comparison results on fine-tuning the GLUE development set, SQuAD v1.1,
SQuAD v2.0, and SWAG—Inserting InA into BERT − large(1*), RoBERTa− large(2*)
and DeBERTa− large(3*). The values after each model are inhibition levels.

Model
#Train

GLUE
SQuAD

v1.1
SQuAD

v2.0
SWAG

(Large Model on InA)
CoLA
Mcc
8.5k

QQP
Acc
364k

MNLI
Acc
393k

SST2
Acc
67k

STS-B
Corr
7k

QNLI
Acc
108k

RTE
Acc
2.5k

MRPC
Acc
3.7k

Avg.
F1/EM
87.6k

F1/EM
130.3k

Acc
73.5k

1*

BERT(0) 65.5 91.5 86.6 93.9 88.7 92.5 66.4 85.0 83.76 91.1/84.3 81.6/78.9 86.6
BERT(0.1) 65.8 91.4 86.5 93.5 88.9 92.4 70.1 83.1 83.96 91.1/84.4 81.3/78.5 86.5
BERT(0.3) 65.9 91.5 86.3 94.4 89.0 92.7 69.0 84.8 84.19 91.1/84.4 81.4/78.1 86.7
BERT(0.9) 64.3 91.4 86.3 93.3 88.3 92.4 71.1 84.3 83.70 91.3/84.6 81.5/78.1 86.7

2*

RoBERTa(0) 64.1 92.2 90.2 95.8 92.0 94.1 85.2 89.0 87.81 93.9/88.4 88.3/84.7 88.3
RoBERTa(0.1) 65.5 92.0 89.5 95.6 92.4 94.4 83.4 91.7 88.05 94.1/88.8 88.5/85.5 88.4
RoBERTa(0.3) 68.5 92.2 90.2 96.4 92.0 94.4 85.2 90.8 88.69 94.2/88.8 88.7/85.3 89.6
RoBERTa(0.9) 67.5 92.1 89.6 95.8 91.6 94.1 85.2 89.7 88.20 94.7/89.2 89.1/86.3 89.9

3*

DeBERTaV3(0) 73.2 93.1 90.9 96.6 93.2 95.5 90.3 91.4 90.65 95.2/89.7 90.8/88.5 91.9
DeBERTaV3(0.1) 76.5 93.2 90.8 96.2 93.2 96.0 90.0 92.3 91.03 95.3/89.9 91.2/88.7 93.3
DeBERTaV3(0.3) 76.4 93.2 90.9 96.6 93.2 96.1 90.7 93.1 91.28 95.4/89.9 91.1/88.4 93.5
DeBERTaV3(0.9) 72.8 93.0 90.9 96.2 92.6 95.5 89.5 90.7 90.19 95.4/90.0 91.6/89.0 93.3

We also summarise the performance of using four different inhibition levels in Table

5.6. For text classification tasks, when the inhibition level percentile is 0.3, InA can
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achieve the dominant results. In Figure 5.3, the inhibition mechanism affects the fine-

tuning performance, especially when the inhibition level is between 10% and 30%. But for

the question-answering and adversarial text-generation tasks, when the inhibition level

percentile is 0.9, there is a weak improvement.

Trainable Weights by Using s on InA

InA on Single Key or Query Side. For the single side conditions (either on the Key

or on the Query) and based on DeBERTaV 3− large, we summarise the results in Table

5.7. When the inhibition level Inhp is 0.3, we get the best GLUE average using InA both

on the Key and on the Query. There are two unexpected findings when inserting InA

into the single attention side (Key or Query). The first is that when setting the inhibition

level Inhp = 0.0, we can achieve the best result at 92.1% in terms of fine-tuning the RTE

task. The second is that when fine-tuning the downstream SQuAD v1.1 task with 0.3 and

0.1 inhibition levels, the Key side and the Query side respectively present the best result

at 95.8%/89.3% and 95.8%/89.5%.

Table 5.7: Comparison results on fine-tuning the GLUE development set, SQuAD v1.1,
SQuAD v2.0, SWAG and NER. ( Note that Key* and Query* respectively mean insert-
ing InA into Transformers’ Key side and Query side).

Model
#Train

GLUE
SQuAD

v1.1
SQuAD

v2.0
SWAG

(Large)
CoLA
Mcc
8.5k

QQP
Acc
364k

MNLI-m/mm
Acc
393k

SST2
Acc
67k

STS-B
Corr
7k

QNLI
Acc
108k

RTE
Acc
2.5k

MRPC
Acc
3.7k

Avg.
F1/EM
87.6k

F1/EM
130.3k

Acc
73.5k

Key*

giDeBERTaV3(0) 72.6 93.0 90.9/90.9 96.3 92.8 95.4 88.8 92.2 90.25 94.8/89.2 89.9/86.5 92.2
giDeBERTaV3(0.1) 74.0 93.0 91.2/91.0 96.2 92.9 95.4 89.5 91.9 90.51 94.8/89.3 89.7/86.9 91.6
giDeBERTaV3(0.3) 75.0 93.1 91.0/90.9 96.2 92.8 95.3 91.7 91.7 90.85 95.8/89.389.9/86.4 92.2
giDeBERTaV3(0.9) 72.0 93.1 91.0/91.0 96.3 92.8 95.4 91.3 91.4 90.41 94.8/89.3 90.3/86.9 92.0

Query*

giDeBERTaV3(0) 71.9 93.0 91.0/90.9 96.2 92.8 95.3 92.1 90.2 90.31 94.7/89.2 90.1/86.9 92.2
giDeBERTaV3(0.1) 73.2 92.9 91.3/90.9 96.3 92.7 95.1 89.2 90.2 90.11 95.8/89.590.4/87.7 92.2
giDeBERTaV3(0.3) 73.5 92.9 91.3/90.9 96.2 93.0 95.4 89.5 91.9 90.46 94.8/89.3 89.7/86.9 91.6
giDeBERTaV3(0.9) 74.2 93.0 90.8/90.8 95.6 92.9 95.4 90.6 90.2 90.34 94.8/89.5 89.8/86.7 92.0

Inserting InA into Several Last Layers. To find the best inserting position, for

example, which layer in BERT-like architectures needs inhibition, as well as ascertain how

deep the inhibition should be set (for example, from the 16th layer to the 24th layer), we

summarise the relevant results in Table 5.8 based on DeBERTaV 3− large. We roughly

disassemble the DeBERTa architecture in Figure 5.4 and, depending on this, we insert

InA into several last layers (last 3, 6 and 12 layers).

5.7 Analysis and Discussion

We now proceed to empirically validate the effectiveness of InA. Based on experimental

results of the benchmarks, we address and answer the following three questions: Q1:

Should we really need inhibition during Adaptation fine-tuning? And how does the InA

method work during fine-tuning? Q2: If we need it, how to choose the inhibition level
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From Input Side to Output Side

  Gate with Inhibition on Several Heads 

(First Three Heads and Last Three Heads)  

  Gate with Inhibition on Several Layers 

(Last Three Layers)  

Input Output

Figure 5.4: Roughly disassembled DeBERTaV3 architecture.

Table 5.8: Comparison results on fine-tuning the GLUE development set, SQuAD v1.1,
SQuAD v2.0, SWAG and NER on language models’ several last layers.

Model
#Train

GLUE
SQuAD
v1.1

SQuAD
v2.0

SWAG

(Large Model on InA)
CoLA
Mcc
8.5k

QQP
Acc
364k

MNLI
Acc
393k

SST2
Acc
67k

STS-B
Corr
7k

QNLI
Acc
108k

RTE
Acc
2.5k

MRPC
Acc
3.7k

Avg.
F1/EM
87.6k

F1/EM
130.3k

Acc
73.5k

Last 3

DeBERTaV3(0) 73.5 92.9 91.0 96.6 92.8 95.5 89.2 90.7 90.27 94.7/89.1 89.7/86.9 91.4
DeBERTaV3(0.1) 73.2 93.0 90.9 96.5 92.9 95.8 90.6 91.1 90.50 94.3/88.6 89.5/86.1 91.0
DeBERTaV3(0.3) 74.2 93.0 91.1 96.2 93.0 95.3 90.2 91.4 90.55 94.6/89.1 89.7/86.8 91.3
DeBERTaV3(0.9) 74.4 93.0 90.9 96.0 93.0 95.3 89.5 91.7 90.48 94.2/88.5 89.9/86.9 91.2

Last 6

DeBERTaV3(0) 72.6 93.0 91.1 96.2 92.9 95.3 88.8 90.9 90.10 94.5/89.2 89.5/86.8 91.2
DeBERTaV3(0.1) 72.9 93.0 91.1 96.2 92.9 95.3 88.8 90.9 90.14 94.5/88.9 89.5/86.7 91.3
DeBERTaV3(0.3) 73.6 93.2 91.0 96.3 93.0 95.7 88.1 91.2 90.26 94.6/89.1 89.5/86.7 91.3
DeBERTaV3(0.9) 74.2 93.1 90.9 96.0 93.0 95.4 88.5 90.9 90.25 94.7/89.0 89.5/86.8 91.2

Last 12

DeBERTaV3(0) 73.4 93.0 91.0 96.2 92.9 95.3 89.2 90.9 90.24 94.5/89.0 89.4/86.7 91.2
DeBERTaV3(0.1) 73.9 93.0 91.0 96.2 92.9 95.5 89.9 91.1 90.44 94.4/88.9 89.5/86.9 91.2
DeBERTaV3(0.3) 74.8 93.2 91.0 96.3 93.0 95.6 89.8 91.3 90.63 94.6/89.0 89.5/86.8 91.3
DeBERTaV3(0.9) 74.2 93.1 90.9 96.0 93.0 95.3 89.3 90.9 90.34 94.7/89.0 89.4/86.7 91.2

Inhp and select a good rank s in real cases? Q3: Dose the inhibition adaptation matrix

Winhibition really inhibit irrelevant knowledge? If yes, which irrelevant knowledge will be

inhibited in practice? We believe that our answers to Q2 and Q3 shed light on the

fundamental principles of using pre-trained language models on downstream tasks.

5.7.1 Difference Between LoRA and InA

We conducted experiments to ensure a fair comparison with LoRA. From Figure 5.5a) to

Figure 5.10a), when inhibition level is 0, namely, when InA is initialized as LoRA, InA

can reweight the pre-trained parameters. However, if InA sets a higher inhibition lever,

such as Inhp = 0.3, as seen from Figure 5.5c) to Figure 5.10c), InA presents the ability to

further adapt the activated features to weaken the influence of the irrelevant information.

A lower Th has a weaker influence on the inhibition of passing information, but a higher

one will inhibit most passing information. Although the performance between LoRA and

InA is quite similar, InA still has the advantage to inhibit the passing information by

using a proper Th. InA not only inherits the ability of LoRA to compress the passing
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CoLA: input_text = ['They caused him to become angry by making him .'] output_text = [' ']

a） b） c） d） e）

Figure 5.5: From left to right, fine-tuning BERT − large on CoLA with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), d) InA(0.9).

SQuAD: text = ['I put my red bag in the black bag .'] question = ['What is the colour of my bag ?'] answer = ['red']

a） b） c） d） e）

Figure 5.6: From left to right, fine-tuning BERT − large on SQuAD with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), e) InA(0.9).

information but also inhibit the passing information by using a threshold. InA offers two

key advantages over adapters like LoRA and Adapter: (1) InA incorporates the rank of

the adapter r to control redundant information flow through the bottleneck. This allows

the passing information to be treated as compressed compared to the original information

in LoRA; (2) InA also utilizes a subtracted threshold to reduce the passing information,

effectively controlling the Inhibition threshold. This achieves the same effect as adjusting

only r. The passing information in InA can be considered as incomplete, as it discards

task-irrelevant parts of the original information.

5.7.2 Should we need inhibition during fine-tuning? And how

does it work?

Redundant features that we obtained from pre-trained language models can reduce the

performance when using the full fine-tuning method, especially when fine-tuning on a

small dataset. Therefore, we apply a similar MLP architecture (as the one used in gate

multilayer perceptron (gMLP) [242]) with the proposed inhibition mechanism to address

this challenge, and it eventually shows a positive effect on reducing the irrelevant knowl-

edge. We need InA when fine-tuning pre-trained LMs on downstream NLU tasks.

Because RoBERTa has pre-trained over 160GB texts with a larger mini-batch and

a larger byte-level of Byte-Pair Encoding [243]. This finally prompts RoBERTa to gain

a robust speciality - the capacity to handle large and wide vocabularies [217]. InA on
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RTE: input_text = ['A smaller proportion of Yugoslavia   s Italians were settled in Slovenia ( at the 1991 national census , some 3000 
inhabitants of Slovenia declared themselves as ethnic Italians ) .'] output_text = ['Slovenia has 3,000 inhabitants .']

a） b） c） d） e）

Figure 5.7: From left to right, fine-tuning BERT − large on RTE with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), d) InA(0.9).

MRPC: input_text = ['"We acted because we saw the existing evidence in a new light , through the prism of our experience on 11 September 
, " Rumsfeld said . '] output_text = ['Rather , the US acted because the administration saw " existing evidence in a new light , 
through the prism of our experience on September 11 " .']

a） b） c） d） e）

Figure 5.8: From left to right, fine-tuning BERT − large on MRPC with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), e) InA(0.9).

RoBERTa cannot achieve better results on RTE, and we infer that InA also needs more

fine-tuning steps to scale the robust large weights on small downstream tasks. DeBERTa

has two special vectors inside: the content vector and the position vector. Its attention

weights among words are computed by using disentangled matrices respectively based

on their content and relative position vectors [220], and this makes a stronger contex-

tual connection among input word vectors. InA on DeBERTa can inhibit the redundant

contextual connection among input word vectors by scaling these disentangled matrices.

In other words, these inhibited gate MLPs can also act as a sparse layer which provides

DeBERTa with positive weights to concentrate more on significant connections.

5.7.3 How to choose the inhibition level Inhp and select a good

rank s in real cases?

We further investigate the influence of Inhp on fine-tuning GLUE, SQuAD and SWAG

tasks. From Table 5.6, in terms of the overall performance, we find that a proper inhibition

level (e.g., Inhp = 0.3) can make the text classification results better, and a strong

inhibition (e.g., Inhp = 0.9) can benefit the question-answering task. In practice, we find

that if the size of the downstream dataset is small (e.g., RTE), it is better to insert InA

into a Query with 0% inhibition or insert InA into double sides (Query and Key) with

an inhibition level of 30%. To our best knowledge, we conclude the experience about how
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QNLI: input_text = ['Where did Jebe die ?'] output_text = ['Genghis Khan recalled Subutai back to Mongolia soon afterwards, and Jebe 
died on the road back to Samarkand .']

a） b） c） d） e）

Figure 5.9: From left to right, fine-tuning BERT − large on QNLI with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), e) InA(0.9).

SWAG: input_start = ['Members of the procession walk down the street holding small horn brass instruments. 
A drum line'] 

a） b） c） d） e）

endings0 = ['passes by 
walking down the 
street playing their 
instruments.'] 

{label}

endings1 = ['has heard 
approaching them.']

endings2 = ['arrives 
and they're outside 
dancing and asleep.']

endings3 = ['turns the 
lead singer watches 
the performance.']

Figure 5.10: From left to right, fine-tuning BERT − large on SWAG with a) no-InA, b)
InA(0.0), c) InA(0.1), d) InA(0.3), e) InA(0.9).

to find a proper inhibition threshold during the InA fine-tuning as: (1) firstly use the 0%

inhibition, (2) if the result is better than that without InA, choose the inhibition threshold

between 10% and 30%, (3) and on the contrary, use a higher inhibition threshold (e.g.,

90%). In order to find a good rank s in practical cases, we summarize the results of

inserting InA into several last Transformer attention layers in Table 5.8. We find that

inserting InA into several last layers cannot get any obvious improvements when fine-

tuning pre-trained DeBERTaV3 on downstream tasks. However, the useful finding is

when fine-tuning on downstream NLU tasks, we should insert InA into all layers or as

many layers as when the memory is available.
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5.7.4 Can InA really inhibit irrelevant knowledge? How can

InA inhibit them?

To answer these two questions, we finally turn our attention to the performance of inhi-

bition vector Winhibition and focus on its function to inhibit irrelevant knowledge.

For the first question, when fine-tuning on the SQuAD task under five conditions:

without InA, with InA when Inhp = 0.0, 0.1, 0.3, 0.9, we plot the averaged attention score

heatmap of the last layer (we average all heads in the 24-th layer) in Figure 5.6 As the

inhibition level is becoming stronger (from Inhp = 0.0 to Inhp = 0.9), the attention

score of ”I” and ”my” is gradually reduced, which means the influence of such irrelevant

knowledge is eventually eliminated, while the overall distribution trend of the attention

score keeps the same. In Figure 5.6, the text = [’I put my red bag in the black bag .’],

and the question = [’What is the colour of my bag ?’], then the answer = [’red’]. After

the fine-tuning process, we expect that the concentrated words of the question vector

should be ”colour”, and the concentrated words of the text vector should be ”red” or

”black”. However, the classical FT method presents a residual problem with the ”noise”

knowledge. InA finally eliminates the ”noise” knowledge as the Inhp grows higher (e.g.,

”I” and ”my” in Figure 5.6 a) and e)). This brings us the answer that InA can inhibit

irrelevant knowledge during fine-tuning.

For the second question, according to how much it can tune the attention scores, we

also plot averaged attention score heatmaps over five downstream tasks: CoLA (seen in

Figure 5.5, RTE (seen in Figure 5.7), MRPC (seen in Figure 5.8), QNLI (seen in Figure

5.9) and SWAG (seen in Figure 5.10). From Table 5.3, when using InA, we can find an

obvious improvement in CoLA compared with other results. The Corpus of Linguistic

Acceptability of ’They caused him to become angry by making him .’ is False. In Figure

5.5 a), the attention block mostly concentrates on [’They’, ’him’, ’to’, ’by’, ’making’,

’him’ ’.’]. After the use of InA fine-tuning, the difference between Figure 5.5 a) and

Figure 5.5 c) (or d)) indicates that InA can eliminate the influence of ’to’ and ’by’ in

terms of the attention score. The correct phrase should be ’They caused him to become

angry by making him [adjective].’. But for our knowledge, the grammar logic of [’They’,

’making’, ’him’, ’.’] could make the linguistic acceptability analysis more simple, which

means the lack of ”noise” knowledge can help to simplify the classifying process.

InA cannot outperform the standard fine-tuning method on the RTE. One reason we

inferred is that the data is small. Another reason should be the purpose of RTE is to

recognize the textual entailment, and InA eliminates the ”noisy” knowledge that would

potentially match the label. From Figure 5.7, we find that ”irrelevant” and ”noisy”

knowledge can be found in the label. For example, the inputtext = [’A smaller proportion
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of Yugoslavia s Italians were settled in Slovenia ( at the 1991 national census , some

3000 inhabitants of Slovenia declared themselves as ethnic Italians ) .’] and outputtext

= [’Slovenia has 3,000 inhabitants .’]. From Figure 5.7 a) to b), c) and d), in terms

of the attention score, we find that InA has reduced the concentrated area ([’some’,

’3000’, ’inhabitants’, ’Slovenia’, ’declared’, ’themselves’, ’as’, ’ethnic’, ’Italians’, ’.’ ])

to a smaller one ([’some’, ’of’, ’.’]). Specifically, when Inhp = 0.1, the attention score

heatmap concentrates on [’at’, ’some’, ’3000’, ’inhabitants’, ’declared’ ], which shows

highly matched words with the label, except [’Slovenia’] . All of these indicate that the

inhibition adaptation can amplify the important features and eliminate the irrelevant

features for a specific downstream task, but its function sometimes is limited by the size

of the downstream data set.

5.8 Conclusion

We proposed an inhibition adaption fine-tuning method - InA, a lightweight alternative

vector that both reduces the influence of the irrelevant knowledge and retains high model

quality. Specifically, it remains the significant feature but eliminates the secondary task-

relevant or task-irrelevant features with quick task-switching properties when deployed as

a service.

There are many directions for our future work. (1) The mechanism behinds InA fine-

tuning is clarified in this article – how InA inhibits task-irrelevant features and keeps the

competitive perform on downstream tasks. But on the RTE task, to a certain extent,

how to retrieve such ”irrelevant knowledge” and improve the match with the label needs

more studies, as well as on the text generation task. To retrieve back the inhibited

features, InA also can be combined with other efficient adaptation methods (e.g., prefix-

tuning, adaption, LoRA or other adaptions that can disinhibit the inhibition). (2) When

applying InA fine-tuning on downstream tasks, we mostly depend on heuristics to select

the weight matrices and the inhibition levels. Accordingly, we can set the inhibition level

by an automatic way to fine-tune the pre-trained LMs on a specific task. (3) The last

one is the activation function of InA, which suggests whether there is a more effective

activation function that can provide InA with a more proper negative tail, and this above

point can also be a source of inspiration for our future work.



Chapter 6

Domain Specific Assistant

Instruction on Psychotherapy

Chatbot

LLMs have demonstrated impressive generalization capabilities through fine-tuning on

specific tasks with human-written instruction data. However, the limited quantity, diver-

sity, and professional expertise of such instruction data raise concerns about the perfor-

mance of LLMs in psychotherapy tasks when provided with domain-specific instructions.

To address this, we propose Domain-Specific Assistant Instructions based on Alexan-

derStreet therapy and counseling data and fine-tune pre-trained LLMs on this dataset.

Through quantitative evaluation of linguistic quality using automatic and human evalu-

ation, we observe that pre-trained LLMs fine-tuned on Psychotherapy Assistant Instruc-

tions outperform state-of-the-art LLMs response baselines. Our Assistant-Instruction

approach offers a half-annotation method to align pre-trained LLMs with instructions.

We also release our large synthetic dataset, facilitating future studies on professional

instruction tuning.

6.1 Introduction

LLMs have demonstrated impressive generalization capabilities, such as in-context learn-

ing [57], chain-of-thoughts reasoning [58], and biomedical diagnosing [59]. Instruction-

tuning of LLMs has enabled them to follow natural language instructions and perform

real-world tasks [60]. Two main methods have been developed for instruction-tuning

LLMs: (1) fine-tuning the model on a wide range of tasks using human-annotated prompts

and feedback [61], and (2) supervised fine-tuning using public benchmarks and datasets

augmented with manually or automatically generated instructions [62]. RLHF has proven

93
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Question: What is DSM-5 and ICD-10 Coding?

Output: The depressive disorders grouping in the fifth edition of the Diagnostic and Statistical 

Manual of mental disorders or DSM-5 contains a number of distinct disorders, each given it's own 

unique diagnostic code. 

Domain: Depressive Disorders.

Concept Explanation Task
Psychological Instruction: Summarize  
the bellow description and explain the 
below concept on [***] domain. Add 
more common knowledge. ...

Question Answering Task
Pschological Instruction: Output a 
more professional instruction and 
output based on given question and an 
answer in [***] domain.  ...

Dialogue Generation Task
Psychological Instruction: Make a 
more professional instruction and 
output based on given context of 
conversation in [***] domain. ...

Depressive 

Disorders

Addictive

Disorders

A.D.H.D

Anxiety 

Disorders

...

Psychotherapy 
In stru ct ion s 
Template
Instruction:
Input:
Output:
Task:
Domain:

Psychotherapy Data From Alexander Street

Natural Task 
Identification

Domain Knowledge 
Expansion

Figure 6.1: Schematic representation of Assistant-Instructional prompts in psychotherapy
domains. In this approach, a model is allowed to utilize learned knowledge to get familiar
with psychotherapy knowledge-based instructions and use them to map a given input to
its corresponding domain output.

to be an effective way to improve LLMs in various domains, such as medicine [63], knowl-

edge graphs [64], and biomedical applications [65], but it comes with a high cost. Natural

instructions [60], and even un-natural instructions [66], can provide knowledge in multiple

domains, but LLMs pre-trained on vast corpora (e.g., Llama1 [67] and Llama2 [68] con-

taining books, common crawled conversations, arxiv articles, GitHub, C4, and Wikipedia

data) still require additional professional knowledge, especially from domain experts. Self-

Instruct tuning [69], [70] and Guess-Instruction tuning methods have shown better per-

formance in aligning LLMs with human intent by learning from instruction-following data

generated by state-of-the-art instruction-tuned teacher LLMs (e.g., GPT-3, GPT-3.5, and

even GPT-4). These lines of instruction-tuning research have proven effective in improving

the zero and few-shot generalization abilities of LLMs.

LLMs have been utilized in various ways, such as prompt engineering [244], teach-

ing small language models to reason [245], adapting LLMs on natural common domains

through Self-Instruct tuning with low cost [69], Stanford Alpaca [246] using 52K instruction-

following samples generated by GPT-4, and Vicuna [247] relying on around 700K instruction-

following samples (70K conversions) shared with user-ChatGPT [248]. However, the abil-
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ity of these approaches to generalize across various psychological domains has not been

systematically studied, and the availability of data related to mental health counseling

is very limited [249]–[251]. The sensitivity of mental health and psychological counseling

data, along with limited access, hinders the improvement of dialog agents in the domain of

psychotherapy counseling. To address this, our paper presents the Assistant-Instruction

approach, which aims to (1) achieve generalization over different psychological consulting

tasks and (2) incorporate psychological knowledge into natural common LLMs. Figure

6.1 provides an overview of our proposed approach, wherein a single model can perform

various NLP tasks within the psychotherapy domain.

To achieve human-level professional responses in instruction-tuning for psychotherapy,

we propose a novel approach using GPT-4 as a teacher for Assistant-Instruct tuning (a half

self-instruct tuning method) on psychotherapy consulting tasks. Our article makes the

following contributions: (a) We are releasing psychotherapy data that has been revised

and enriched by GPT-4, covering a wide range of psychological topics and incorporating

feedback knowledge generated by GPT-4. (b) This proposed data, revised by GPT-4,

have been used to fine-tune four pre-trained LLMs, and this finally enhances the LLMs’

understanding of professional psychotherapy knowledge and enables them to generate

content close to GPT-4. (c) Assistant-Instruction tuned LLMs demonstrate the effective-

ness of using GPT-4-revised instruction data to tune LLMs in psychotherapy domains,

providing practical insights to build a general-purpose LLM-following agent powered by

teacher LLMs (e.g., GPT-4).

6.2 Problem Statement

The dataset we aim to generate consists of a collection of instructions {It}, where each

instruction defines a specific domain t in natural language. Each domain t comprises

nt ≥ 1 input-output instances {(Xt,i, Yt,i)}nt

i=1. We hypothesize that each domain t has

its own distinct characteristics (as shown in the left panel of Figure 1.5). The objective

is for a model M to generate the correct output based on the domain instruction and

the corresponding input: M (It, Xt,i) = Yt,i, for i ∈ {1, . . . , nt}. The instruction is for-

mulated as ”Provide suggestions or comments on addressing and alleviating the following

topic,” and the instance input is formatted as ”addictive disorders.” It is important to

note that in some cases, there may not be strict boundaries between the instruction and

instance input. For example, if the instruction is ”Summarize the bellow description

and explain the below concept on [***] domain. Add more common knowledge.” and

instance input is ”Addiction and Spiritual Crisis.”, the instruction domain may overlap

with other domains. It may not always be possible to construct instructions (especially
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the output) that contain specific professional knowledge. Because multi-domain knowl-

edge will make the training unstable, and the LLMs will generate the answer with some

irrelevant knowledge. To promote diversity and individuality in the data format, we allow

these instructions, instance inputs, and outputs to incorporate additional knowledge and

assistant from other models (i.e., Y = Y + Y ′, where Y ′ is revised by GPT-4 and then

generated from GPT-4). In the right panel of Figure 1.5, we encounter the challenge of

making the data LLM-friendly, wherein we use LLMs themselves to format instructions,

instance inputs, and outputs.

6.3 Related Work

6.3.1 Psychotherapy-based Conversational Systems

Chatbots have the capability to generate human-like social and emotional responses, but

their effectiveness as automated agents in various domains needs further investigation.

Prior researchers have explored the potential and significance of incorporating conver-

sational AI in psychotherapy [252], [253]. Some studies have focused on using smart

conversational agents to detect neuropsychiatric disorders [254], [255], employing deep

neural learning models for generating psychiatric-oriented responses. Other research [256]

has highlighted the use of conversational agents in psycho-education and self-adherence.

Additionally, there have been efforts to develop chatbots through fine-tuning pre-trained

language models on psychotherapy datasets [250].

6.3.2 Instruction Data for Language

Annotating large-scale instruction data presents challenges for humans due to the need

for 1) creativity in generating novel domains and 2) expertise in crafting solutions

for each specific domain. Several effective approaches have been proposed to address this

issue by generating, optimizing, and reformatting instructions.

Generate-Instruction: One alternative method for meta-training involves training

the LM to generate task instructions from input instances and labels [257], [258]. During

inference, the flipped learning method is used to train LMs by selecting the label option

that is most likely to generate the task instruction. This approach allows us to generate

instructions from data in any format that contains input instances and labels. However,

a drawback is that the generated instructions may deviate from the core theme and can-

not fuse common-used knowledge to professional domain knowledge (e.g., psychotherapy

domain).

Self-Instruction: Self-Instruction [62] offers an annotation-free method for aligning
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ChatGLM2-

6B

Llama2-

7B

Pre-trained Large Language Models

Psychotherapy
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Figure 6.2: The schematic of the model fine-tuning and conversation between Chatbot
and User.

Pre-trained LMs with instructions. It demonstrates the remarkable ability of LMs to

generalize zero-shot to new tasks using GPT-3 and reformating the generated instruction.

The method involves concatenating the instruction and instance input as a prompt and

training the model to generate the instance output in a supervised manner. Multiple tem-

plates are used to encode the instruction and instance input to ensure model robustness.

This approach has the advantage of augmenting data without the need for annotations.

However, the generated instructions still lack new knowledge, especially in professional

domains like psychotherapy.

Unnatural-Instruction: Unnatural-Instruction [66] is a large dataset of creative

and diverse instructions collected with minimal human effort. It involves prompting a

language model with three seed examples of instructions and eliciting a fourth to create

64,000 examples. The dataset has the potential to be expanded further by prompting

the model to rephrase each instruction, resulting in approximately 240,000 examples of

instructions, inputs, and outputs. However, this dataset, although diverse, also lacks the

ability to absorb new or professional knowledge.

Overall, these approaches show promise in generating instructions, but the challenge

remains in incorporating new and domain-specific knowledge into the generated instruc-

tions, especially in specialized fields such as psychotherapy.

6.3.3 Parameter-Efficient Fine-Tuning Pre-trained Language Mod-

els

We introduce several SOTA PEFTs: Adapter [56], Prefix [53], LoRA [52], GLoRA [228]

and InA [9]. They all only tune the added parameters while freezing Pre-trained LMs

and inject trainable low-rank matrices into transformer layers to approximate the weight

updates. By using a low-rank decomposition W0+∆ = W0+Wdown, where Wdown ∈ Rd×r,

Wup ∈ Rr×k, Adapter, Prefix, LoRA, GLoRA and InA update the Query, Key and V alue
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projection matrices (Wq,Wk,Wv) in the multi-head attention sub-layer. For the specific

input H, they modify the projection output Ho as:

Ho ← f(Hconcat(P,W )) + s · f(HWdown − Th)Wup, (6.1)

where H ∈ RM×d represents the input hidden vectors; Ho ∈ RM×d is the output of the

self-attention; concat is the concatenation process; f is the activation function; s ⩾ 1 is a

tunable scalar hyperparameter; and Th is the threshold.

Table 6.1: The Natural-Instruction and GPT-4 revised Assistant-Instruction on the De-
pressive Disorder domain.
Instruction: Instruction:
What suggestions or comments you can pro-
vide to address or alleviate the following top-
ics?

Kindly provide professional suggestions or comments on effectively ad-
dressing and alleviating [Depressive Disorders].

Input: Input:
We are talking about [Depressive Disorders]. We are discussing [Depressive Disorders].
Output: Output:
A major depressive episode has a number of
characteristic features, which take place most
of the day, nearly every day, where relevant.
The two main characteristics are a depressed
mood, and a noticeably decreased interest
in most activities. Other characteristics in-
clude trouble sleeping, diminished hunger or
pronounced weight loss, trouble concentrat-
ing or making decisions, fatigue or loss of en-
ergy, recurring suicidal thoughts with or with-
out intent to act on these thoughts, feelings
of worthlessness or excessive or inappropriate
guilt, psychomotor agitation or retardation,
and feelings of low self-worth or pronounced
guilt. These symptoms must cause marked
distress in the patient’s work or social life.
For all of these episodes the clinician should
ensure that the symptoms are not better ex-
plained by another medical condition or by
the affects of a substance.

A major depressive episode is characterized by a range of distinct fea-
tures that persist for most of the day, nearly every day. The primary
indicators include a persistent low mood and a significant decrease in
interest or pleasure in most activities. Other symptoms may involve
sleep disturbances, changes in appetite or weight, difficulty concen-
trating or making decisions, fatigue, recurring thoughts of suicide with
or without intent to act on them, feelings of worthlessness or exces-
sive guilt, psychomotor agitation or retardation, and feelings of low
self-worth. These symptoms should cause marked distress in the indi-
vidual’s work, social life, or daily functioning. When addressing De-
pressive Disorders, clinicians should ensure that the symptoms are not
better explained by another medical condition or the effects of sub-
stance use.
As professionals, let’s explore effective treatment options, such as psy-
chotherapy, cognitive-behavioral therapy, medication, or a combination
of these approaches. Encouraging patients to engage in regular physi-
cal activity, maintain a healthy diet, and establish a supportive social
network can also be beneficial. Furthermore, it is crucial to foster
a compassionate and understanding environment to help individuals
with Depressive Disorders seek appropriate help and support.

Perplexity(ChatGLM2-6B): 6.71 Perplexity(ChatGLM2-6B): 2.15

6.4 Methodology

In this section, we present Assistant Instructions, a method designed to achieve three

objectives: (1) clean the psychotherapy data; (2) revise the instructions based on instance

inputs and outputs; and (3) generate formatted knowledge specific to domain tasks on

LLMs. Figure 6.2 shows the schematic of the model training and instruction data creating.

6.4.1 Data Collection

Alexander Street Press is a website known for its vast collection of video transcripts and

recordings from therapy and counseling sessions, covering topics such as depression, abuse,

trauma, and mental disorders. The video transcript dataset was specifically collected from
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Table 6.2: Prompt used for identifying the type of tasks. There are three main tasks
that can represent the psychotherapy data: concept explanation, dialogue generation and
question answering.

Can the following task be regarded as a question answering task with finite output on [***] domain?
Input: ”JEFFREY MISHLOVE Yeah! Well we’re running out of time. . . time. I supposed the point is that you’ve
been successful in. . . in developing these devices and. . . and using them in the laboratory?
Output: ”STEPHEN LABERGE Yes! That’s right! Well, not just in the laboratory, but we developed devices that. . .
that do have sensors built under the mass that could be used at home, so that. . . that of course was one of our major
goals which used to have make lucid dreaming available in general to people so that they could make better lucid
dream.”
Result: Yes
Can the following task be regarded as a dialogue generation task with finite output on [***] domain?
Input: ”CHRISTINA GROF Thank you... thank you. ,JEFFERY MISHLOVE It’s a pleasure to be with you.
,CHRISTINA GROF It’s a real pleasure to be here. ”
Output: ”JEFFERY MISHLOVE When we think of addiction many people still don’t feel that there might be a
connection with. . . with the spiritual quest and in fact they almost seem as. . . as if they opposite ends of the
spectrum, yet it was as. . . as you point out in the thirst for wholeness a phrase that comes from the great Swiss
psychiatrist Carl Jung is it something that took place many decades ago, he. . . he recognized in a letter to the founder
of Alcoholics Anonymous that. . . that there is a relationship between alcoholism and the spiritual quest.”
Result: Yes
Can the following task be regarded as a concept explanation task with finite output on [***] domain?
Input: ” ADDICTIVE DISORDERS ”
Output: ”The human mind can be altered by any number of substances. These may be medications used to treat
illness, infection, or even some of the mental disorders that we’ve looked at elsewhere in this series. They can be
components of the food or beverages we consume that may change our cognition or behavior, or they can even be
substances used to intentionally affect our behavior or perceptions of the world. However, any number of mind-altering
substances can be used to the point that they cause clinically significant distress or functional impairment, leading to
possible intoxication, abuse, addiction and withdrawal. This is the case for those who experience Addictive Disorders,
also known as Substance-related and Addictive Disorders. These individuals may have their cognition, perceptions or
physiology debilitated in reversible or irreversible ways. They may continue to use these substances, even when they
experience clusters of negative effects. And they may become so dependent on a substance that even when they try to
cease or reduce their use, they experience additional behavioral or cognitive consequences. Substance-related disorders
are part of a larger grouping of disorders called substance-related and addictive disorders codified and defined in the
fifth edition of the Diagnostic and Statistical Manual of Mental Disorders or DSM-5. These disorders share a common
trait of activating the brain’s reward system by a substance or addiction, and the individuals with these disorders
continue their use and behavior, whether or not they recognize it as a problem. ”
Result: Yes

the Counseling and Therapy channel on the website. We curated the dataset to include

only English-language sessions recorded between 1980 and 2023, resulting in a set of 1,333

videos and accompanying transcripts. After filtering out short-length and non-informative

videos, the final dataset comprises 1,179 video transcripts, containing a total of 188,421

dialogue turns. To ensure data quality, we performed a cleaning process to remove Unicode

characters, pauses, and other unnecessary elements, resulting in a dataset with 3,141,520

words and a vocabulary size of 30,438.

6.4.2 Prompting Templates for Task Identification

Because we need to arrange psychotherapy data to correct tasks, such as concept expla-

nation, question answering and dialogue generation, we use an assistant LLM – GPT-4

to identify whether the human-constructed instruction based on the Natural-Instruction

method is the corresponding task or not. We directly prompt the LLM in a few-shot way

to determine this, using 3 classification instructions from the seed tasks. The prompting

template is shown in Table 6.2.
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6.4.3 Assistant-Instruction

We utilized GPT-4 to revise and generate instructions, instance inputs, and outputs with

new knowledge for the psychotherapy data. GPT-4 was used to modify the data based on

domains, instance inputs and outputs, while also optimizing the outputs by revising the

content, as GPT-4 cannot generate entirely new knowledge most of the time. By retaining

the feeding new knowledge and enriching instructions and outputs, the psychotherapy data

became more suitable for feeding to LLMs. To prepare the data, we removed any ethical

information and revised the instructions using GPT-4 API, while preserving the core

meanings. Due to numerous vocabulary and grammar errors in the original psychotherapy

data, manual processing and revision of these errors were not feasible. In Table 6.1, we

presented the one command that requires generated instructions from GPT-4 (Please find

one more example in Table 6.5).

On the Alexander Street Press website, most video transcripts and recordings consist

of knowledge presentations and counseling talks. For knowledge presentations, there are

no instruction questions or instance inputs, and the output is the content presented by

the speaker. In the first step, we manually set instructions and instance inputs based

on the discussed topics (e.g., Depressive disorders, Addiction, etc.). In the second step,

we used the GPT-4 API to revise and generate instructions and instance inputs based

on the contents. Additinally, we also employed GPT-4 to clean and revise the output.

Finally, we format all data by utilizing the GPT-4 API again. The details are described

in Algorithm 3.

6.4.4 Generate and Expand Psychotherapy Instructions

The Assistant-Instructions in this study follow a strict instruction input-output format,

such as generating concept explanation instances under the single-output condition (Table

6.7), and generating dialogue generation instances (Table 6.8) and generating the question

answering instances (Table 6.9). To enhance readability and extract domain knowledge

from psychotherapy data, we adopt free-form natural language methods [259], [260] for

constructing the instructions. Our approach involves two main steps. Firstly, we optimize

formulations that retain the content of the original instructions. We prompt a language

model to reformulate the tasks in the core data for each generated task. The rephrased

instructions do not include inputs, constraints, and formatted outputs; instead, we use the

discussing topic as input and the generated question as the task description to construct

the rephrased instruction. Secondly, in some instruction formulations, we embed the

input into or add it behind the “INPUT” template – ”We are talking about [***].” –

to emphasize the topic. This manually constructed “INPUT” also captures the content
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discussed by members of the audience in Alexander Street Video, merging the discussed

topic with the point of interest for the audience or visitors (refer to Table 6.1).

The GPT-4 language model effectively generates the required knowledge for identi-

cal formulations, while in some cases, it copies the original instruction. Some original

instruction formulations may lack a valid format, such as not containing the “INPUT”

placeholder (due to the audience’s preference for silence in this psychotherapy data). In

such cases, we attempt alternative formulations up to ten times before considering them

as failures to generate a proper Instruction. As a result, some instructions remain un-

changed with no knowledge which is added from GPT-4. However, more than 94% of

the instructions can be revised by GPT-4 and have two valid and distinct alternative

formulations.

Interestingly, some instructions receive more than five comments (aimed to help users)

generated by GPT-4. This is because we asked GPT-4 to provide multiple paraphrases per

example under some commands(e.g., ”Improve all suggestions based on your knowledge.”).

The core psychotherapy data contains examples that share the exact same professional

knowledge but vary in concentration. In certain instances, we utilized the GPT-4 API

to automatically construct the Assistant-Instruction using the command [”Make a more

professional instruction and output based on given context of conversation in [***] do-

main. Remove people’s names and UNKNOWN. Then, improve them all based on your

knowledge. If you cannot do that, output nothing.”].

Table 6.3: For evaluating the performance of LLMs on psychotherapy domain, there are
four pre-trained LLMs which have been tuned on Instruction and Assistant-Instruction.

Ptr-trained
LLMs

Tokens
Model
Size

Fine-Tuned
Methods

Automatic Eval Psycho
-EvalROUGHL LMentry

Falcon 1.5T 7B
None 43.1 32.3 9.2
Instruction 43.5 32.4 9.3
Assis-Instr 47.1 ↑ 32.6 10.2 ↑

Llama2 2.0T 7B
None 54.2 41.5 9.8
Instruction 54.4 41.8 9.8
Assis-Instr 57.2 ↑ 41.7 10.9 ↑

ChatGLM2 1.4T 6B
None 50.9 37.1 9.6
Instruction 51.0 37.7 9.7
Assis-Instr 53.2 ↑ 37.3 10.5 ↑

MPT 1.0T 7B
None 51.3 37.1 9.6
Instruction 51.7 37.5 9.8
Assis-Instr 53.2 ↑ 37.3 10.2 ↑

6.5 Experiments

Our experiments and codes are implemented based on GPT4 API [261], Falcon-7B [262],

Llama2-7B [68], ChatGLM2-6B [263] and MPT-7B [264] models.
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6.5.1 Experiments Settings

We conducted an evaluation of the language models mentioned above for the task of

response generation in the psychotherapy domain, specifically focusing on therapeutic

counseling. The hyper-parameters used for querying the OpenAI API and fine-tuning

LLMs in different experiments are respectively presented in Table 6.4 and Table 6.5.

These hyper-parameters include batch size (bz), learning rate (lr), cut-off, inhibition per-

centile (InhP ), hyper-parameters in InA (r, alpha, and dropout), temperature (Temp.)

for controlling output randomness and diversity, top-p (TopP ) for limiting token selection,

repetition penalty (Penalty), size of beam search algorithm (SizeBeam), and maximum

output length (LengthMax). For generating the assistant instructions based on new psy-

chotherapy data, we utilized the GPT-4 API as the Assistant-LLM. To fine-tune the

generated instruction data effectively, we employed the inhibition adaption fine-tuning

method on Falcon-7B, Llama2-7B, ChatGLM2-6B and MPT-7B based on hyperparame-

ters shown in Table 6.5. The fine-tuned LLMs were then evaluated by two psychologists on

psychotherapy data. The fine-tuning process required two weeks for Falcon-7B/Llama2-

7B and two days for ChatGLM2-6B/MPT-7B when using four NVIDIA Tesla A100 GPUs

with 40GB graphic memory cards.

Querying the GPT-4 API.

We use a set of hyperparameters shown in Table 6.4 when querying GPT-4 API for

different purposes. These hyperparameters are found to work well with the GPT-4 model.

Table 6.4: Hyper-parameters for querying OpenAI API in different experiments.
Experiments

Settings
Self-Instructions Using GPT-4 API

Temp. TopP Penalty SizeBeam LengthMax

Identifying Tasks 0 0 0 1 3
Generating Instances 0 0 1.5 1 512

Pseudo Code for Prompt Engineering by Using GPT-4.

Algorithm 3 describes the processing of psychotherapy data crawled from Alexander

Street. We follow an iterative process to construct our own Assistant-Instruction set

using GPT-4 and Self-Instruct [62].

6.5.2 Tuning on Psychotherapy Data

For better deployment and adaption of LLMs, we use hyperparameters shown in Table

6.5 when fine-tuning four LLMs on psychotherapy data. Compared to the pre-trained
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Algorithm 3: Pseudo code for prompt engineering, GPT-4 call and hyper-
parameters in data generation. The data flow is highlighted in blue.
Input: prompt input, prompt no input.

1 prompt input: (
2 ”Make a more professional instruction, input and output based on the given context in [***]

domain. \n\n ”
3 ”Remove people’s names and UNKNOWN. Add more knowledge based on your knowledge. If

you cannot do that, output nothing. \n\n ”
4 ”### Instruction: \n {instruction}\n\n ### Input: {input}\n\n ### Response:
{response}”

5 ),
6 prompt no input: (
7 ”Make a more professional instruction, input and output based on the given context in [***]

domain. \n\n ”
8 ”Remove people’s names and UNKNOWN. Add more knowledge based on your knowledge. If

you cannot do that, output nothing. \n\n ”
9 ”### Instruction: \n{instruction}\n\n ### Response: {response}”

10 )
Output: output.

11 output = openai.ChatCompletion.create (
12 model =”chatgpt-turbo”,
13 messages [ ”role”: ”user”, ”content”: prompt ],
14 temperature = 1.0,
15 top.p=1.0, # nucleus sampling over entire vocabulary
16 max tokens=512, # the max number of generated tokens
17 )

LLMs, we also evaluated the Zero-Shot, Natural-Instruction and Assistant-Instruction

generation results.

Table 6.5: Hyper-parameters for fine-tuning pre-trained LLMs in different experiments.
Experiments

Settings
InA Fine-Tuning

bz lr epochs InhP r alpha dropout
Natural-Instruction 128 0.001 40 0.3 32 16 0.05
Assistant-Instruction 128 0.001 40 0.3 32 16 0.05

Zero-Shot generation. To assess the ability of pre-trained LLMs in generating

psychotherapy content, we conducted Zero-Shot learning on psychotherapy data. Despite

being trained on some psychotherapy instructions, most pre-trained LLMs still require

additional professional psychotherapy knowledge.

InA fine-tuning. In order to enhance the deployability and adaptability of LLMs,

we employed the InA fine-tuning method, which combines the merits of other adaption

fine-tuning methods such as Adapter, Prefix, and LoRA. In Table 6.5, we set the rank of

LoRA to 32 and the inhibition percentile to 0.3. Fine-tuning for a few epochs (e.g., 2 or

5 epochs) did not lead to significant improvement, and we observed almost no difference

before and after InA fine-tuning. Therefore, we decided to fine-tune for 40 epochs with a

batch size of 128.

Assistant Instructions Fine-tuning. We fine-tuned four pre-trained LLMs on
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Table 6.6: Contents generating from (1) ChatGLM2-6B, (2) Fine-Tuned ChatGLM2-6B
on Instruction and (3) Fine-Tuned ChatGLM2-6B on Assistant-Instruction. The answers
are also evaluated by the psychologists as a Score (from 0 to 5).

Instruction:Please provide professional suggestions or comments to address and alleviate Addictive
Disorders.

Psycho-
Eval

ChatGLM2-
6B:

In addition to discussing Addictive Disorders, it’s important to address the potential con-
sequences of these disorders, such as the impact on personal relationships, finances, and
overall well-being. It’s also essential to recognize the early signs and symptoms of addiction
and seek professional help as soon as possible. Addictive disorders can be characterized
by an intense urge to repeatedly engage in an activity or behavior that is harmful to one’s
self or others. This can lead to negative consequences such as financial loss, lost relation-
ships, and even physical health problems. It’s crucial to seek professional help for Addictive
Disorders, as they can be treated effectively with therapy and medication. With the right
support and treatment, individuals can overcome their addiction and improve their overall
quality of life.

Readability:
4; Profes-
sional: 2;
Match: 3

Instruction
Fine-
Tuned
ChatGLM2-
6B:

In addition to discussing Addictive Disorders, it is important to also address the potential
consequences of these disorders, such as the impact on personal relationships, financial
stability, and overall well-being. It is also essential to recognize the early signs and symptoms
of Addictive Disorders and seek professional help as soon as possible. Additionally, we
should be mindful of the various forms of Addictive Disorders, such as substance abuse and
non-substance abuse, and treat each accordingly. Finally, we should continue to educate
ourselves and others about the dangers of Addictive Disorders and their impact on society.
What are some common misconceptions about depression that you have encountered in
your work?

Readability:
4; Profes-
sional: 3;
Match: 4

Assistant-
Instruction
Fine-
Tuned
ChatGLM2-
6B:

In addition to discussing Addictive Disorders, it would be helpful to also address the issue of
substance abuse and its impact on individuals, families, and communities. Substance abuse
can often lead to addiction, and it is important to address both issues in order to provide
comprehensive support for those struggling with Addictive Disorders. Additionally, it would
be helpful to address the root causes of substance abuse and to explore ways to prevent it
from happening in the first place. This could include education and awareness campaigns,
as well as support for individuals and families who have been impacted by substance abuse.
Offering tips and strategies for maintaining sobriety, such as setting boundaries and finding
healthy coping mechanisms. Therefore, it is important to tailor treatment plans to meet
the specific needs of each individual.

Readability:
4; Profes-
sional: 4;
Match: 4

manually-constructed instructions and GPT-4 generated instructions. To limit the length

of the generated content when using the GPT-4 API to generate Assistant-Instruction

dataset based on psychotherapy data, we set inference hyper-parameters as shown in

Table 6.4. To measure the LLMs’ friendliness of the generated instructions, we also

compared and reported their perplexity using ChatGLM2-6B in Table 6.1.

6.5.3 Evaluation

As shown in Table 6.3, our fine-tuned LLMs are evaluated under two main methods: Au-

tomatic evaluation and Human evaluation. For the automatic evaluation, we submit 200

generated answers and use ROUGEL [265] and LMentry [266] to compare the generated

output with a reference text and calculate a score for the similarity evaluation. We use

ChatGLM2-6B as a teacher model to compute the Perplexity (PPL) of the generated

text. For the human evaluation, we also submit 60 generated outputs (20 examples for

each tasks, as we have 3 main tasks) without model and domain information to these two

psychologists, and based on their professional knowledge, they will measure the quality of

the generated content according to the questions and answers. There are six grades that

they will use to mark the quality of generated content: Extreme Bad (0), Bad (1), Neutral
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Table 6.7: The Natural-Instruction and GPT-4 revised Assistant-Instruction on the Bipo-
lar Disorders domain.
Prompt: Make a more professional instruc-
tion, input and output based on the given context
in [Bipolar Disorder] domain. Remove people’s
names and UNKNOWN. Add more knowledge
based on your knowledge. If you cannot do that,
output nothing.

(This part is generated and revised by GPT-4.)

Instruction: Instruction:
””” What suggestions or comments you can pro-
vide to address or alleviate the following topics?
”””

””” What suggestions or comments can you provide to address or al-
leviate the following topics: [Bipolar Disorders], MOOD EPISODES;
Manic? ”””

Input: Input:
””” We are talking about [Bipolar Disorders].
MOOD EPISODES; Manic ”””

””” We are talking about Bipolar Disorders, specifically the MOOD
EPISODES, specifically the Manic episode. ”””

Output: Output:
””” SEAN HARRIGAN Most mood disorders
are made up of specific mood episodes. A mood
episode is a specific period of time where an indi-
vidual feels abnormally energized and elevated,
or depressed. The most recent episode the in-
dividual experienced affects the coding of the
disorder. Beyond coding, an understanding of
the type and frequency of mood disorders ex-
perienced by an individual patient is necessary
in order to make an appropriate diagnosis. Be-
cause of this, we will first define each of the three
mood episodes, manic, hypomanic, and major
depressive. We will then explain the pattern by
which these episodes present in specific mood
disorders before exploring how the presence of
these episodes can lead the caregiver to an over-
all diagnosis. ”””

””” The treatment and management of Bipolar Disorders, particularly
during the Manic episode, requires a comprehensive approach. Medi-
cation and psychotherapy are the mainstays of treatment. Mood sta-
bilizers like lithium, anticonvulsants, and atypical antipsychotic med-
ications are commonly used to manage manic symptoms and stabi-
lize mood fluctuations. Psychotherapy, including cognitive-behavioral
therapy (CBT) and psychoeducation, can help individuals develop cop-
ing strategies, recognize triggers, and improve their overall function-
ing. Family support and education are also crucial for the well-being
of individuals with Bipolar Disorders during manic episodes. Lifestyle
changes such as maintaining a regular sleep schedule, avoiding alcohol
and illicit drugs, and managing stress can be beneficial in managing the
condition. Early intervention and consistent follow-up with healthcare
professionals are essential to prevent the escalation of manic symptoms
and ensure effective long-term management. ”””

Task: Task:
””” Concept explanation task. ””” ””” Concept explanation task. ”””
Domain: Domain:
””” Bipolar Disorders. ””” ””” Bipolar Disorders. ”””

(2), Acceptable (3), Good (4) and Very Good (5). They should consider the readability,

professional and match score (that measures the match with the domain knowledge).

Human Evaluation Setup.

Here, we present additional details about the human evaluation conducted to rate the

responses generated by various models in the domain of psychotherapy. The evaluation

process involved two psychologists who were asked to assess the predictions and responses

of the models. To ensure consistency and reliability, the evaluators first established the

standards for a 6-level rating system in a single-blind review condition. After establishing

the criteria, each evaluator independently rated all the instances based on the provided

instruction, instance input, and model responses. The model responses were anonymized

and presented in a random order in the evaluation process. An example of the annotation

process is provided in Table 6.6. The reported performance in this study is based on

the results from one evaluator, and the trends observed from the other evaluator’s results

are consistent with the findings. Overall, this evaluation process was designed to ensure

accurate and reliable assessment of the models’ performance in generating responses in
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Table 6.8: The Natural-Instruction and GPT-4 revised Assistant-Instruction on the Ad-
diction domain.
Make a more professional instruction, input
and output based on given context in [Ad-
diction] domain. Remove people’s names and
UNKNOWN. Then, improve them all based
on your knowledge. If you cannot do that,
output nothing.

(This part is generated and revised by GPT-4.)

Instruction: Instruction:
””” What suggestions or comments you can provide
to address or alleviate the following topics? ”””

””” What suggestions or comments do you have to address or
alleviate [Addiction]? ”””

Input: Input:
””” We are talking about [Addiction]. JEFFERY
MISHLOVE It may never occur to them that what
their. . . their soul is really yearning for maybe a you
know a way of life you know a larger sense of being.
They may actually think that it. . . it is the alcohol
or it is the particular drug or it is the sexual thrill
that. . . that’s creating it. ”””

””” We are talking about [Addiction]. It may never occur to
them that what their soul is really yearning for maybe a way of
life, a larger sense of being. They may actually think that it is the
alcohol or it is the particular drug or it is the sexual thrill that’s
creating it. ”””

Output: Output:
””” CHRISTINA GROF And I think that’s true
and. . . and we are quick fix culture you know we
want instant gratification at every. . . at every turn
and what this kind of spiritual quest requires is a
long term commitment to some sort of spiritual life
to some sort of practicing certain set of principles
to doing certain kinds of spiritual practice whether
it is Twelve-Step practice or Buddhist meditation or
Christian prayer and that gradually overtime one’s
life changes dramatically. ”””

””” One possible approach to address or alleviate Addictive Dis-
orders is to recognize that individuals may be seeking a deeper
sense of fulfillment or meaning in their lives. This suggests the
importance of providing avenues for spiritual growth and personal
development. Encouraging long-term commitment to spiritual
practices and principles, such as Twelve-Step programs, Buddhist
meditation, or Christian prayer, may gradually lead to positive
transformations and help individuals overcome their addictive ten-
dencies. Additionally, a holistic approach that includes psycho-
logical counseling, support groups, and medical treatment can
be effective in treating addictive disorders and promoting overall
well-being ”””

Task: Task:
””” Dialogue generation task. ””” ””” Dialogue generation task. ”””
Domain: Domain:
””” Addiction. ””” ””” Addiction. ”””

the psychotherapy domain. The use of two independent evaluators further enhances the

credibility and robustness of the evaluation results.

6.6 Results

We present the revised results of GPT-4 in Table 6.1 and provide a summary of the

evaluation results in Table 6.3. Additionally, Table 6.6 showcases examples of generation

results. Notably, LLMs fine-tuned on Assistant Instruction outperform zero-shot and

Natural-Instruct tuning methods.

6.6.1 Performance on Revision

In Table 6.1, we utilized ChatGLM2-6B as the teacher model to calculate the perplexity

of the data. The left panel of Table 6.1 shows the original psychotherapy data, which

was revised using manually crafted Natural-Instructions. The right panel of Table 6.1

contains additional information contributed by GPT-4, such as common knowledge about

depressive disorders, including psychotherapy, cognitive-behavioral therapy, medication,

and a combination of treatment approaches. These recommendations from GPT-4 are
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considered common-sense by psychologists, but the original psychotherapy data lacked

sufficient common knowledge (because it always merely has professional knowledge). The

instructions and instance inputs were also refined by GPT-4 based on the given command.

Perplexity is a metric that gauges the language model’s ability to predict a sequence of

words. In Table 6.1, the perplexity of the right panel is lower than that of the left panel.

When using ChatGLM2-6B as the base model, this revision process makes the content

more LLM-friendly, potentially transforming ”professional knowledge format” into a more

accessible ”common knowledge format” (or open-domain knowledge format).

6.6.2 Generation on Psychotherapy Domain

We present a performance summary of different instruction-tuning methods applied to

four pre-trained LLMs in Table 6.3. While the ROUGH-L and LMentry evaluation re-

sults show some improvement with the Natural-Instruction tuning method, the Assistant-

Instruction, which has been carefully revised by GPT-4, demonstrates greater improve-

ment in the psychotherapy domain. To validate the performance, we use a selected portion

of psychotherapy data as a validation set. The ROUGH-L model is used as a standard

for summarizing long content texts, and after 40 epochs of fine-tuning on natural instruc-

tion psychotherapy data, there is noticeable improvement in matching the psychother-

apy answers. Furthermore, through content revising and leveraging additional common

knowledge from GPT-4, all LLMs show significant enhancement in matching the revised

answers. Pre-trained LLMs can provide clients with comments to address psychological

problems, but the quality of generated content may not always be fully accepted by psy-

chologists. From Table 6.3, we observe that psychologists tend to prefer models that have

been fine-tuned on psychotherapy data. As most LLMs lack specialization in a specific

domain, they often require more domain-specific knowledge to improve their performance

in professional domains.

6.6.3 Evaluation of Psychologists

To improve the acceptability of our answers, we enlisted two psychologists to evaluate

the generated content on three aspects: readability, professionalism, and match to psy-

chotherapy knowledge. In terms of readability, all generated output performed excellently.

This is because LLMs have been pre-trained on a vast corpus, giving them an inherent

advantage in readability, and the size of tokens used does not seem to affect their perfor-

mance significantly. Regarding the professionalism of the generated content, the psychol-

ogists gave higher scores to models that had been fine-tuned on psychotherapy instruction

data compared to the corresponding original LLMs. Models fine-tuned on psychotherapy
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Assistant-Instruction data demonstrated more professional knowledge in their generated

content compared to other models. The fusion of professional and common knowledge

in the Assistant-Instruction, a half Self-Instruction tuning method, allowed for the gen-

eration of more professional content. As for the match to psychotherapy knowledge, it

is evident that models fine-tuned on psychotherapy assistant instructions were able to

match the correct psychological domain effectively. There are more psychotherapy re-

sponse examples on other LLMs, such as ChatGLM2-6B in Table 6.10, MPT-7B in Table

6.11, Falcon-7B in Table 6.12 and Llama2-7B in Table 6.13.

6.6.4 Human Evaluation Agreement

To assess the reliability of our human evaluation, we conducted an inner-rater agreement

analysis [62] between our two evaluators. We used Cohen’s κ to measure inter-rater agree-

ment for categorical items. The 6-level rating scale (ranging from 0 to 5) was treated as

a categorical variable for each aspect under consideration. The resulting κ value was

0.61, indicating a moderate level of agreement according to common practice. Further-

more, we computed the Spearman correlation coefficient ρ between the ratings of our two

evaluators, treating the ratings as ordinal variables (ranging from 0 to 5). The obtained

coefficient was ρ = 0.79, demonstrating a high correlation between the two evaluators.

These results indicate a reasonably reliable human evaluation process for our study.

6.7 Analysis and Discussion

We will now empirically validate the effectiveness of Assistant-Instruction on psychother-

apy data. Our findings are as follows: 1. Pre-trained LLMs still require professional

knowledge, as they have only been pre-trained on common knowledge. 2. GPT-4 opti-

mized Assistant-Instruction psychotherapy data can significantly improve the performance

of LLMs in psychotherapy domains.

The Role of Professional Knowledge in Pre-trained LLMs. To examine the

significance of professional knowledge in pre-trained LLMs, we evaluated four different

language models from the Huggingface model pool. To assess the effectiveness of the

proposal instruction revising method, we generated 60 outputs per model and summarized

their metrics in Table 6.3. Research by [267] confirms the necessity of pre-training to

expand LLMs’ knowledge. While well pre-trained LLMs show competence, fine-tuning

them on domain-specific data further enhances their performance in specific domains,

similar to the pre-training process. Although pre-trained LLMs can provide positive

responses and aid in problem-solving, they may require additional fine-tuning with the
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guidance of ”professional experts” to excel in specific tasks. This emphasizes the value of

incorporating professional knowledge into the training process of LLMs.

How can assistant instruction benefit LLMs in psychological domains? To

assess the proficiency of generated content and understand how assistant instruction can

enhance the professional knowledge of fine-tuned LLMs, we conducted a comparison and

summarized the merics in Table 6.3. When comparing the content generated by pre-

trained ChatGLM2-6B with that of natural instructions fine-tuned ChatGLM2-6B, we

observed that the latter contains additional professional knowledge (can be seen from

Table 6.6), such as ”Additionally, we should be mindful of the various forms of Addictive

Disorders, such as substance abuse and non-substance abuse, and treat each accordingly.”

While this extra knowledge provides more professional information, LLMs could not offer

further professional insights into addictive disorders. To address this limitation, we revised

and optimized the natural instruction using GPT-4 to create an assistant instruction that

incorporates both professional and common knowledge. When comparing the generated

content of ChatGLM2-6B fine-tuned on assistant instruction to that of ChatGLM2-6B

fine-tuned on natural instruction, we found that the former provides more comprehensive

information. For example, it offers insights on maintaining sobriety, such as ”Offering tips

and strategies for maintaining sobriety, such as setting boundaries and finding healthy cop-

ing mechanisms.” Additionally, it includes extra common knowledge, such as ”Substance

abuse can often lead to addiction, and it is important to address both issues in order to

provide comprehensive support for those struggling with Addictive Disorders.”

Their performance on professional domain. To enhance the performance of

LLMs in professional domains like psychotherapy, we have introduced a method called

Assistant-Instruction. This approach involves revising psychotherapy presentations and

discussions in a Natural-Instruction format. The process comprises two main steps: (1)Us-

ing the GPT-4 API to generate common knowledge; (2) Combining the professional knowl-

edge from psychotherapy data with the generated common knowledge from GPT-4 to cre-

ate a comprehensive instruction dataset. The results, as shown in Table 6.3, indicate that

fine-tuning LLMs with assistant instructions leads to improvements in generating profes-

sional knowledge related to addictive disorders. Additionally, the LLMs produce positive

comments, potentially influenced by the knowledge gained from GPT-4. These findings

suggest that the Assistant-Instruction method can effectively improve LLMs’ performance

in psychotherapy domains.
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6.8 Limitations

In this study, we focus on assistant instruction for psychotherapy tasks and do not explore

its application in other domains such as medical or financial domains. However, we

believe that assistant instruction has the potential to be adapted for these domains by

incorporating a combination of common and domain-specific knowledge, which we leave

for future research. Assistant instruction assumes that most psychological domains can

be represented in a unified format that is more compatible with LLMs. Nevertheless,

the definition of prompt input can vary between natural and unnatural instructions [60],

[61], [66]. Natural instructions involve a straightforward combination of task instructions

(requesting comments or concept explanations) and input instances (focused on different

psychological domains such as depression or addiction). On the other hand, prompt

libraries [268], which scale instructions across various psychological domains, may require

additional techniques to carefully separate the task instruction and input instances for

each specific domain.

6.9 Conclusion

We propose a novel method called ASSISTANT-INSTRUCT for fine-tuning LMs to im-

prove their instruction-following ability. This method combines both common knowledge

and psychotherapy professional knowledge to generate instruction data with the help of

experts. It retains the general knowledge already present in pre-trained LMs and incorpo-

rates psychotherapy-specific knowledge from expert-presented instructions. To enhance

fine-tuning, we format the psychotherapy data, such as presentations, talks, and conver-

sations, to make it more compatible with LMs. Human evaluation of this method demon-

strates significant improvement compared to existing instruction methods. ASSISTANT-

INSTRUCT can serve as an initial step to align pre-trained LMs with LM-revised in-

structions, and further research can build upon this data to enhance instruction-following

models.

6.10 Appendix

We illustrate the generated contents of four LLMs from Table 6.14 to Table 6.17. In

terms of the same questions, four LLMs give various answers, but all of them have simi-

lar intentions. In general, original LLMs can also provide some valuable and professional

comments, but sometimes they only give brief and short responses. The Assistant Instruc-

tion fine-tuned LLMs also have this problem, but considering the overall performance, it
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is still worth to fine-tune the pre-trained LLMs on Assistant-Instruction psychotherapy

data.
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Table 6.9: The Natural-Instruction and GPT-4 revised Assistant-Instruction on the Ad-
dictive Disorder domain.
Instruction: Instruction:
””” What suggestions or com-
ments you can provide to ad-
dress or alleviate the follow-
ing topics? ”””

””” Please provide professional suggestions or comments to effectively address and alle-
viate [Addictive Disorders]. ”””

Input: Input:
””” We are talking about [Ad-
dictive Disorders]. ”””

””” We are discussing [Addictive Disorders]. ”””

Output: Output:
””” The human mind can be
altered by any number of sub-
stances. These may be med-
ications used to treat illness,
infection, or even some of the
mental disorders that we’ve
looked at elsewhere in this se-
ries. They can be compo-
nents of the food or beverages
we consume that may change
our cognition or behaviour, or
they can even be substances
used to intentionally affect
our behaviour or perceptions
of the world. However, any
number of mind-altering sub-
stances can be used to the
point that they cause clin-
ically significant distress or
functional impairment, lead-
ing to possible intoxication,
abuse, addiction and with-
drawal. This is the case for
those who experience Addic-
tive Disorders, also known as
Substance-related and Addic-
tive Disorders. These individ-
uals may have their cognition,
perceptions or physiology de-
bilitated in reversible or ir-
reversible ways. They may
continue to use these sub-
stances, even when they ex-
perience clusters of negative
effects. And they may be-
come so dependent on a sub-
stance that even when they
try to cease or reduce their
use, they experience addi-
tional behavioral or cognitive
consequences. Substance-
related disorders are part of
a larger grouping of disor-
ders called substance-related
and addictive disorders cod-
ified and defined in the fifth
edition of the Diagnostic and
Statistical Manual of Mental
Disorders or DSM-5. These
disorders share a common
trait of activating the brain’s
reward system by a substance
or addiction, and the individ-
uals with these disorders con-
tinue their use and behavior,
whether or not they recognize
it as a problem. ”””

””” The human mind can be influenced by various substances, including medications
used for medical treatment or components of food and beverages, leading to alterations
in cognition and behavior. Additionally, substances may be intentionally used to
affect behavior or perceptions. However, excessive use of mind-altering substances can
result in clinically significant distress and functional impairment, potentially leading
to intoxication, abuse, addiction, and withdrawal. Addictive Disorders, also known
as Substance-related and Addictive Disorders, encompass conditions where individuals
experience debilitation of cognition, perceptions, or physiology, either in reversible or
irreversible ways. Despite experiencing negative effects, individuals with Addictive
Disorders may persist in substance use and face additional behavioral or cognitive
consequences when attempting to reduce or cease usage. These disorders are part of
a broader classification known as substance-related and addictive disorders, defined in
the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5).
A common characteristic of these disorders is the activation of the brain’s reward system
through substance use or addiction, irrespective of the individual’s recognition of the
issue.
To effectively address and alleviate Addictive Disorders, consider the following profes-
sional suggestions:
1. Seek specialized help: Encourage individuals struggling with Addictive Disorders
to seek guidance from healthcare professionals with expertise in addiction treatment.
Qualified professionals can conduct comprehensive assessments, accurately diagnose the
condition, and design personalized treatment plans.
2. Adopt a comprehensive approach: Employ a comprehensive treatment approach that
integrates evidence-based therapeutic interventions and, if appropriate, medication. Tai-
lor the treatment plan to address the specific substance(s) involved and meet the unique
needs of each individual.
3. Individualized therapy: Engage individuals in individual therapy, such as cognitive-
behavioral therapy (CBT) or interpersonal therapy (IPT), to explore and address the
underlying factors contributing to addictive behaviors, develop effective coping strategies,
and promote positive behavioral changes.
4. Medication-assisted treatment (MAT): Consider medication-assisted treatment in con-
junction with therapy for certain Addictive Disorders. MAT can aid in managing cravings,
reducing withdrawal symptoms, and supporting sustained recovery.
5. Support groups and peer assistance: Encourage participation in support groups or
group therapy to foster a sense of community, empathy, and shared experiences among
individuals facing similar challenges.
6. Dual diagnosis treatment: For individuals with co-occurring mental health conditions,
prioritize dual diagnosis treatment that simultaneously addresses the addiction and un-
derlying mental health issues, promoting holistic recovery.
7. Involve family support: Engage family members in the treatment process to provide
understanding and support. Family therapy can enhance communication and create a
supportive environment conducive to recovery.
8. Develop relapse prevention strategies: Collaborate with healthcare professionals to
develop personalized relapse prevention strategies, identifying triggers and coping mech-
anisms to minimize the risk of relapse.
9. Emphasize lifestyle changes: Promote a healthy lifestyle that includes regular exercise,
proper nutrition, sufficient sleep, stress management techniques, and engaging in activities
that support overall well-being.
10. Sustain aftercare support: Recognize that recovery from Addictive Disorders is an
ongoing process. Offer continued support, including regular follow-up appointments,
therapy sessions, and participation in support groups to sustain recovery and address
any challenges that may arise.
Remember, the journey to recovery from Addictive Disorders is unique for each individual.
Collaborating closely with qualified healthcare professionals ensures a tailored approach
that addresses their specific needs, fostering lasting recovery and improved well-being.
”””

Task: Task:
””” Question answering task.
”””

””” Question answering task. ”””

Domain: Domain:
””” Addictive Disorders. ””” ””” Addictive Disorders. ”””
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Table 6.10: The Zero-Shot, Natural-Instruction and Assistant-Instruction Tuned
ChatGLM-6B on Psychotherapy data.

The Zero-Shot Tuned ChatGLM-6B on Psychotherapy data.
Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Bipolar Disorders]. ”””
Input:
””” We are discussing [Bipolar Disorders]. ”””
Output:
”””
Thank you for bringing up Bipolar Disorder. Here are some suggestions that may be helpful:
1. Seek professional help: If you are experiencing symptoms of Bipolar Disorder, it is important to seek help from
a mental health professional. They will be able to provide you with the tools and support you need to manage your
symptoms and improve your overall well-being. 2. Practice self-care: Bipolar Disorder can be a challenging condition
to manage, but with the right support and self-care, it is possible to alleviate symptoms and improve quality of life.
This may include activities such as exercise, healthy eating, and getting enough rest. 3. Follow a consistent routine:
Consistency is key when it comes to managing Bipolar Disorder. Try to stick to a regular routine as much as possible,
including your sleep schedule, medication regimen, and any other triggers that may contribute to your symptoms.
4. Learn to manage stress: Stress can exacerbate symptoms of Bipolar Disorder, so it is important to learn ways to
manage stress and prevent it from triggering your symptoms. This may include therapy, meditation, or other relaxation
techniques. 5. Consider medication: In some cases, medication may be necessary to help manage symptoms of Bipolar
Disorder. It is important to work closely with a mental health professional to determine the right dosage and treatment
plan for you.
I hope these suggestions are helpful. Let me know if you have any other questions or concerns.
”””

The constructed Natural-Instruction Tuned ChatGLM-6B on Psychotherapy data.

Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Bipolar Disorders]. ”””
Input:
””” We are discussing [Bipolar Disorders]. ”””
Output:
”””
Thank you for bringing up Bipolar Disorder. Here are some suggestions that may be helpful:
1. Seek professional help: It’s important to consult with a mental health professional who specializes in Bipolar
Disorder. They will be able to provide you with the proper treatment and medication. 2. Practice self-care: Engage
in activities that bring you joy and help you relax. This can include things like exercise, meditation, or hobbies. 3.
Follow a consistent routine: Maintain a regular sleep schedule, eat a healthy diet, and try to stick to a routine as much
as possible. 4. Connect with others: Reach out to friends and family members for support. 5. Avoid triggers: Identify
things that trigger your Bipolar symptoms and try to avoid them.
Remember, it’s important to seek professional help and work closely with a mental health professional to manage your
symptoms and improve your overall well-being.
”””

The constructed Assistant-Instruction Tuned ChatGLM-6B on Psychotherapy data.

Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Bipolar Disorders]. ”””
Input:
””” We are discussing [Bipolar Disorders]. ”””
Output:
”””
Thank you for bringing up Bipolar Disorder. Here are some suggestions that may be helpful:
1. For individuals with Bipolar Disorder, it is important to seek professional help as soon as possible. This can include
seeking assistance from a mental health professional, such as a psychiatrist or psychologist, who can provide appropriate
treatment and support. 2. It is also important for individuals with Bipolar Disorder to establish a regular routine and
stick to it. This can include setting aside time for exercise, maintaining a consistent sleep schedule, and following a
daily routine that is consistent with medication. 3. In addition, it can be helpful for individuals with Bipolar Disorder
to engage in activities that promote relaxation and reduce stress. This can include hobbies or creative pursuits, such
as painting or playing music, or spending time with friends or loved ones. 4. It is also important for individuals
with Bipolar Disorder to inform their loved ones and family members about their condition. This can help to reduce
stigma and provide support and understanding. 5. Finally, it is important for individuals with Bipolar Disorder to
seek professional help when they are experiencing a manic episode or a depressive episode. This can include seeking
assistance from a mental health professional or calling emergency services if necessary.
I hope these suggestions are helpful. Let me know if you have any further questions or concerns.
”””
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Table 6.11: The Zero-Shot, Natural-Instruction and Assistant-Instruction Tuned MPT-7B
on Psychotherapy data.

The Zero-Shot Tuned MPT-7B on Psychotherapy data.
Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Addictive Disorders]. ”””
Input:
””” We are discussing [Addictive Disorders]. ”””
Output:
”””
Addictive disorders are a group of mental health conditions characterized by compulsive drug seeking and use despite
harmful consequences. The most common addictive disorders are alcoholism, drug addiction, and gambling addiction.
Addictive disorders are often chronic, relapsing, and progressive. They can be caused by a combination of genetic,
environmental, and psychological factors.
Treatment for addictive disorders typically involves a combination of behavioral therapy, medication, and support
groups.
Addictive disorders can be difficult to treat, but there are many resources available to help people overcome their
addiction.
If you or someone you know is struggling with an addictive disorder, please seek help. There is no shame in asking for
help.
”””

The constructed Natural-Instruction Tuned MPT-7B on Psychotherapy data.

Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Addictive Disorders]. ”””
Input:
””” We are discussing [Addictive Disorders]. ”””
Output:
”””
Addictive disorders are a group of mental health conditions characterized by compulsive drug seeking and use despite
harmful consequences. The most common addictive disorders are alcoholism, drug addiction, gambling addiction, and
internet addiction.
Addictive disorders are classified as substance-related disorders in the Diagnostic and Statistical Manual of Mental
Disorders (DSM). They are also classified as addictive, impulse-control, and related disorders in the International
Classification of Diseases (ICD).
Addictive disorders are often chronic and progressive. They can cause significant impairment in social, occupational,
and other important areas of functioning.
Addictive disorders are treatable. Treatment may include medications, behavioral therapy, and/or support groups.
”””

The constructed Assistant-Instruction Tuned MPT-7B on Psychotherapy data.

Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Addictive Disorders]. ”””
Input:
””” We are discussing [Addictive Disorders]. ”””
Output:
”””
I think it’s important to understand what addiction is, and how it differs from other types of compulsive behavior.
Addiction is a chronic brain disease that causes compulsive drug seeking and use, despite harmful consequences. It
affects the brain’s reward system, which is responsible for motivating us to seek out pleasurable activities. When
someone becomes addicted, their brain is wired to seek out drugs, even when they know they’re harmful. This can
lead to risky behaviors, such as driving while intoxicated, or engaging in sexual activity with multiple partners.
Addiction is a complex disease that requires a multifaceted approach to treatment. Treatment should include both
medical and psychological components, as well as support from family and friends. Medical treatment may include
medications to help reduce cravings and ease withdrawal symptoms. Psychological treatment may include cognitive
behavioral therapy (CBT), which helps people change their thinking patterns and behaviors. Support from family and
friends is essential for recovery, as it provides a sense of stability and accountability.
”””
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Table 6.12: The Zero-Shot, Natural-Instruction and Assistant-Instruction Tuned Falcon-
7B on Psychotherapy data.

The Zero-Shot Tuned Falcon-7B on Psychotherapy data.
Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Depressive Disorders].
”””
Input:
””” We are discussing [Depressive Disorders]. ”””
Output:
”””
Depressive Disorders are a serious mental health condition that can significantly impact an individual’s daily life. It is
important to seek professional help if you or someone you know is experiencing symptoms such as persistent sadness,
loss of interest in activities, changes in appetite or sleep patterns, and difficulty concentrating. A mental health
professional can provide effective treatment options, including therapy and medication, to help alleviate symptoms and
improve overall well-being. It is also important to maintain a healthy lifestyle, including regular exercise, a balanced
diet, and social connections, to support mental health.
”””

The constructed Natural-Instruction Tuned Falcon-7B on Psychotherapy data.

Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Depressive Disorders].
”””
Input:
””” We are discussing [Depressive Disorders]. ”””
Output:
”””
Depressive Disorders are a serious mental health condition that can significantly impact an individual’s daily life.
It is important to seek professional help if you or someone you know is experiencing symptoms such as persistent
sadness, loss of interest in activities, changes in appetite or sleep patterns, and difficulty concentrating. A mental
health professional can provide effective treatment options, including therapy and medication, to alleviate symptoms
and improve overall well-being. It is also important to create a support network of friends and family to provide
emotional support during this time.
”””

The constructed Assistant-Instruction Tuned Falcon-7B on Psychotherapy data.

Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Depressive Disorders].
”””
Input:
””” We are discussing [Depressive Disorders]. ”””
Output:
”””
Depressive Disorders are a complex mental health condition that requires a multifaceted approach to effectively ad-
dress and alleviate. Professional suggestions may include seeking professional help from a mental health professional,
engaging in regular physical activity, and cultivating a strong support network. It is also important to maintain a
healthy diet and practice self-care. Engaging in activities that bring joy and fulfillment can also be helpful in managing
symptoms. Therapy is also a highly effective treatment for Depressive Disorders. Therapy can help individuals learn
new coping strategies and develop a more positive outlook. It is important to seek professional help from a licensed
therapist to determine the best course of treatment for each individual.
”””
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Table 6.13: The Zero-Shot, Natural-Instruction and Assistant-Instruction Tuned Llama2-
7B on Psychotherapy data.

The Zero-Shot Tuned Llama2-7B on Psychotherapy data.
Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Autism]. ”””
Input:
””” We are discussing [Autism]. ”””
Output:
”””
Autism is a developmental disorder that can cause significant social, communication and behavioral challenges. There
is no known single cause for autism, but increased awareness and funding support research into possible causes and
better ways to treat the disorder.
”””

The constructed Natural-Instruction Tuned Llama2-7B on Psychotherapy data.

Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Autism]. ”””
Input:
””” We are discussing [Autism]. ”””
Output:
”””
Autism is a developmental disorder that can cause significant social, communication and behavioral challenges. It is a
spectrum disorder, which means that symptoms and severity vary widely among individuals.
”””

The constructed Assistant-Instruction Tuned Llama2-7B on Psychotherapy data.

Instruction:
””” Please provide professional suggestions or comments to effectively address and alleviate [Autism]. ”””
Input:
””” We are discussing [Autism]. ”””
Output:
”””
Autism is a developmental disorder that can cause significant social, communication and behavioral challenges. It
is a spectrum disorder, which means that symptoms can range from mild to severe. Some people with autism may
also have other conditions, such as attention deficit hyperactivity disorder (ADHD), anxiety disorders, or epilepsy.
Applied Behavior Analysis (ABA) a widely recognized and evidence-based therapy for Autism. ABA techniques focus
on promoting positive behaviors and reducing challenging behaviors. Speech and language therapy can help improve
communication skills, such as speech articulation, expressive language, and social communication.
”””
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Table 6.14: Two examples of using Falcon-7B. M1, M2 and M3 respectively is the Read-
ability, Professional and Match Score. For example, 4/5 means Readability of original
LLM / Readability of finetuned-LLM.

Original LLM Assistant Instruction Fine-Tuned LLM M1 M2 M3 Comments
Question: What is Depressive Disorders, and what is its symptoms?

Depressive disorders are a group of men-
tal health conditions characterized by per-
sistent feelings of sadness, loss of interest
in activities, and changes in mood and be-
havior. Symptoms may include feelings of
worthlessness, guilt, and hopelessness, as
well as changes in appetite, sleep patterns,
and energy levels. It is important to seek
professional help if you or someone you
know is experiencing these symptoms.

Depressive disorders are a group of men-
tal health conditions characterized by per-
sistent feelings of sadness, loss of interest
in activities, and changes in mood and be-
havior. Symptoms may include feelings of
worthlessness, guilt, and hopelessness, as
well as changes in appetite, sleep patterns,
and energy levels. It is important to seek
professional help if you or someone you
know is experiencing these symptoms.

5/5 5/5 1/1 This is re-
ally good.

Question: What is Depression Behavioral Activation and Cognitive Change?
Depression Behavioral Activation and Cog-
nitive Change (DBAC) is a cognitive be-
havioral therapy (CBT) approach that aims
to help individuals with depression by ad-
dressing both the behavioral and cogni-
tive aspects of the condition. It involves
identifying and changing negative thought
patterns and behaviors, developing cop-
ing strategies, and improving overall mood.
DBAC has been shown to be effective in
reducing symptoms of depression and im-
proving quality of life for those who undergo
it.

Depression Behavioral Activation and Cog-
nitive Change (DBAC) is a cognitive be-
havioral therapy (CBT) approach that aims
to help individuals with depression by ad-
dressing both the behavioral and cognitive
aspects of the condition. It involves iden-
tifying and changing negative thought pat-
terns and behaviors, as well as developing
new coping strategies and problem-solving
skills. DBAC has been shown to be effective
in reducing symptoms of depression and im-
proving overall quality of life.

3/5 4/5 1/1 .

Table 6.15: One example of using Llama2-7B. M1, M2 and M3 respectively is the Read-
ability, Professional and Match Score (original LLM / finetuned-LLM).

Original LLM Assistant Instruction Fine-Tuned LLM M1 M2 M3 Comments
Question: What is Depressive Disorders, and what is its symptoms?

Depressive disorder is a mental illness that
causes a persistent feeling of sadness and
loss of interest. It can interfere with daily
life, work, school, and relationships.
The symptoms of depressive disorder in-
clude:
- Persistent sad, anxious, or empty mood -
Feelings of hopelessness, pessimism, guilt,
worthlessness, helplessness - Loss of in-
terest or pleasure in activities that were
once enjoyed, including sex - Decreased
energy, fatigue, being ””slowed down”” -
Difficulty concentrating, remembering de-
tails, making decisions - Insomnia, early-
morning wakefulness, or excessive sleeping
- Overeating, or appetite loss - Thoughts of
death or suicide, or suicide attempts
###Reference:
https://www.mayoclinic.org/diseases-
conditions/depression/symptoms-
causes/syc-20356007.

Depressive disorder is a mental illness that
causes a persistent feeling of sadness and
loss of interest. It can interfere with daily
life, causing severe emotional and physical
problems.
Depression is a common but serious mood
disorder. It causes severe symptoms that
affect how you feel, think, and handle daily
activities, such as sleeping, eating, or work-
ing. To be diagnosed with depression, the
symptoms must be present for at least two
weeks.

4/4 3/3 1/2 More
examples
of symp-
toms
would be
better. It
is tricky
to say
”To be
diagnosed
with
depres-
sion, the
symp-
toms
must be
present
for at
least two
weeks.”
because
it is not
the only
one crite-
rion for
diagnosis.



CHAPTER 6. DOMAIN SPECIFIC ASSISTANT INSTRUCTIONON PSYCHOTHERAPY CHATBOT118

Table 6.16: One example of using ChatGLM2-6B. M1, M2 and M3 respectively is the
Readability, Professional and Match Score (original LLM / finetuned-LLM).

Original LLM Assistant Instruction Fine-Tuned LLM M1 M2 M3 Comments
Question: What is Depressive Disorders, and what is its symptoms?

Some suggestions or comments that could
address or alleviate the instruction’s in-
put could include: 1. Depressive disor-
ders are a serious mental health condition
that can affect many aspects of a person’s
life. Symptoms may include persistent feel-
ings of sadness or hopelessness, loss of in-
terest in activities, changes in appetite or
sleep patterns, and low energy. It is impor-
tant to seek professional help if these symp-
toms are affecting daily life. 2. Address-
ing depressive disorders requires a combi-
nation of medication and therapy. Medi-
cations such as selective serotonin reuptake
inhibitors (SSRIs) and non-steroidal anti-
inflammatory drugs (NSAIDs) can help al-
leviate symptoms while therapy can help
identify and address the underlying causes
of the depression. It is important to work
with a mental health professional to find
the right treatment plan. 3. It is im-
portant to note that everyone’s experience
with depressive disorders is different, and
seeking professional help is a journey and
not a one-time event. It is also important
to be patient and understanding with one-
self throughout the process. 4. In addi-
tion to professional help, there are many
things that can be done to alleviate symp-
toms of depressive disorders, such as reg-
ular exercise, healthy eating, and getting
enough sleep. It is important to prioritize
self-care and seek support from loved ones
or a therapist if needed. 5. It is important
to remember that depressive disorders are
a treatable condition, and with the right
treatment and support, recovery is possi-
ble. Overall, addressing depressive disor-
ders requires a multi-faceted approach that
includes medication, therapy, and self-care.
It is important to seek professional help and
work with a mental health professional to
find the right treatment plan.

Certainly, I’d be happy to provide some
information and answer any questions you
may have about depressive disorders and
their symptoms. Depressive disorders are a
common mental health condition that refers
to a range of symptoms that affect a per-
son’s ability to function and maintain a
healthy lifestyle. Some of the most common
symptoms of depressive disorders include:
1. Persistent feelings of sadness or hope-
lessness: This involves a persistent feeling
of sadness or hopelessness that can be as-
sociated with loss, rejection, or other neg-
ative events in life. 2. Loss of interest
in activities that were previously enjoyed:
This involves a loss of interest in activi-
ties that were previously enjoyable or fulfill-
ing. 3. Changes in sleep patterns: This in-
volves changes in the patterns of sleep that
can result in insomnia, difficulty sleeping,
or sleeping too much. 4. Changes in ap-
petite: This involves changes in appetite
that can result in weight gain or loss. 5.
Difficulty concentrating: This involves diffi-
culty concentrating on tasks or ideas, which
can have a significant impact on a per-
son’s ability to function in their daily life.
6. Thoughts of self-harm or suicide: This
involves thoughts of self-harm or suicide,
which can be a symptom of depression. It’s
important to note that these symptoms can
vary from person to person, and some peo-
ple may experience different symptoms or
symptoms to those listed above. Addition-
ally, not everyone who experiences these
symptoms will necessarily have a depres-
sive disorder. However, if you are expe-
riencing any of these symptoms and they
are causing significant distress or impacting
your daily life, it’s important to seek pro-
fessional help. It’s also important to seek
help early on, as untreated depression can
have serious consequences for both physical
and mental health. Some common treat-
ments for depressive disorders include ther-
apy, medication, and lifestyle changes, such
as regular exercise, healthy eating, and get-
ting enough sleep.

4/5 3/5 2/1 It is more
on point,
without
confabu-
lations
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Table 6.17: Two examples of using MPT-7B. M1, M2 and M3 respectively is the Read-
ability, Professional and Match Score (original LLM / finetuned-LLM).

Original LLM Assistant Instruction Fine-Tuned LLM M1 M2 M3 Comments
Question: What is Depressive Disorders, and what is its symptoms?

Depressive disorders are a group of mood
disorders characterized by depressed mood,
loss of interest or pleasure in activities,
weight loss or gain, insomnia or hyper-
somnia, fatigue, feelings of worthlessness
or guilt, slowed thinking, and recurrent
thoughts of death or suicide.
Depressive disorders are classified as ma-
jor depressive disorder (MDD), dysthymia,
bipolar disorder, and postpartum depres-
sion. MDD is the most common type of
depressive disorder. It is characterized by
depressed mood, loss of interest or pleasure
in activities, weight loss or gain, insomnia
or hypersomnia, fatigue, feelings of worth-
lessness or guilt, slowed thinking, and re-
current thoughts of death or suicide. Dys-
thymia is a chronic form of depression that
is less severe than MDD but more severe
than normal sadness. Bipolar disorder is a
mental disorder that causes extreme shifts
in mood, energy, activity levels, and the
ability to carry out day-to-day tasks. Post-
partum depression is a type of depression
that occurs after childbirth.
Symptoms of depressive disorders include:
- Depressed mood - Loss of interest or plea-
sure in activities - Weight loss or gain - In-
somnia or hypersomnia - Fatigue - Feelings
of worthlessness or guilt - Slowed thinking
- Recurrent thoughts of death or suicide

Depressive disorders are a group of mood
disorders characterized by depressed mood,
loss of interest in activities, feelings of
worthlessness or guilt, disturbed sleep or
appetite, fatigue, and sometimes suicidal
thoughts.

3/4 3/3 2/3 The com-
ment
of fine-
tuned
LLM is
too short
and brief.

Question: What is Depression Behavioral Activation and Cognitive Change?
Depression Behavioral Activation and Cog-
nitive Change is a treatment for depression
that focuses on helping people with depres-
sion to change their behavior and think-
ing patterns. The goal of this treatment
is to help people with depression to become
more active, to think more positively about
themselves and their lives, and to make
changes in their lives that will help them
to feel better.
The treatment involves working with a
therapist to identify areas where people
with depression can make changes in their
lives. The therapist will help people with
depression to set goals for making these
changes and to develop a plan for how they
will make these changes. The therapist will
also help people with depression to identify
and overcome any obstacles that might get
in the way of making these changes.

Depression Behavioral Activation and Cog-
nitive Change is a treatment for depression
that focuses on helping people change their
behavior and thinking patterns. It is based
on the idea that depression is caused by
negative thoughts and behaviors, and that
changing these thoughts and behaviors can
help people feel better.
The treatment involves working with a
therapist to identify negative thoughts and
behaviors and then coming up with ways to
change them. The therapist will help the
person come up with new ways of thinking
and behaving that are more positive and
helpful.
The treatment is based on the idea that
depression is caused by negative thoughts
and behaviors, and that changing these
thoughts and behaviors can help people feel
better.

5/3 5/5 1/1 There
are some
repetitive
informa-
tion.



Chapter 7

Conclusion

7.1 Summary

Depression is a complex, multi-symptomatic and highly recrudescent mental disease.

Severity detection and psychotherapy have only stated to be explored. In this work, we

answered the big questions about scoring depressive severity and how to provide universal

psychotherapy to depressive patients. In chapter 2, we found increased delta deactivation

accompanied by strong beta activation is the main feature of depression as the depression

becomes more severe. We also verified that the ANN models using EEGs can detect de-

pression and depressive severity. In Chapter 3, we found that detecting depressive severity

is not a pure classification or scoring task. Therefore, we designed a fuzzy window with

Gaussian processed labels method that can tackle the ordinal scoring tasks, such as de-

pressive severity. In Chapter 4, we found that the bilateral PFC mainly focused on some

cognitive components, for example, rehearsal before recognition to classify objects, inhi-

bition to maintain positive memory and activities, and disinhibition to arouse or activate

subsequent interactions in brain. Meanwhile, the right PFC sometimes could assist left

PFC to implement high capacity WM tasks. By contrast, the posterior regions, PPC,

tends to be engaged in attention arousing and maintaining. These two findings suggest

that a) the recurrent maintenance circuit may keep the brain executing positive cogni-

tive components, b) then the instantly monitoring inhibition would pause the deadlocked

sustention function to save energy, and c) the arriving of disinhibition arouses the next

step in brain to select new subject or focus on novel subjects. In Chapter 5, we an-

swered questions on how pretrained language models can improve their performance on

fine-tuning downstream tasks by purely applying the mutation of the attention block in

Transformers, and found further evidence that inhibited gate MLPs mechanism is impor-

tant to fine-tune language downstream tasks. In Chapter 6, we observed that pre-trained

LLMs fine-tuned on Psychotherapy Assistant Instructions outperform SOTA LLMs re-
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sponse baselines. Our Assistant-Instruction approach offers a half-annotation method to

align pre-trained LLMs with instructions. We also released our large synthetic dataset,

facilitating future studies on professional instruction tuning

7.2 Contributions and Achievements

Scientific contributions of this Thesis is represented by the following achievements:

1. In Chapter 2, we presented the central-parietal increased delta deactivation accom-

panied by strong beta activation in the severe depression group under working mem-

ory tasks. We also proposed models with specific frequencies and brain regions for

detecting depression and scoring the depressive severity based on two professional

psychologists’ score labels. These findings were published on IEEE Transactions on

Neural Systems and Rehabilitation Engineering (IF: 4.9).

2. In Chapter 3, we proposed one method to reduce the influence of the overlapping

features among the ordinal neighbor classes. This process can effectively improve the

scoring performance of the ordinal classification. When the ordinal sequence of the

labels or images is not consecutive, FW-GPL can achieve an equivalent performance

to wholly sequential ordinal data by setting a proper length for the fuzzy window.

We published this method on Applied Sciences (IF: 2.7).

3. In Chapter 4, we examined brain networks of WM by phase-lock coherence and

directional coherence after the 64 channels EEG adaptively fitted and four sources

generated to simulate cerebral internal communications. We proposed our “neu-

rocognitive architecture” of WM based on region-to-region connections, and found

the pathways of memory maintenance and lateral inhibition during WM. We pub-

lished these findings on IEEE Transactions on Neural Systems and Rehabilitation

Engineering (IF: 4.9, WOS citations: 14).

4. In Chapter 5, we proposed one adaption fine-tuning methond - InA that can ef-

fectively inhibit irrelevant information during fine-tuning on downstream tasks, en-

abling the model to focus more on task-related information and eliminating the

impact of irrelevant knowledge. InA gains the capability to suppress task-irrelevant

knowledge by subtracting a threshold. We have submitted this method to Neural

Networks (Minor Revision).

5. In Chapter 6, we released psychotherapy data, revised by GPT-4. This process en-

hanced the LLMs’ understanding of new professional knowledge and enables them

to generate content close to GPT-4.This chapter demonstrated the effectiveness of
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using GPT-4-revised data for LLM instruction-tuning, providing practical insights

for building a general-purpose instruction-following agent powered by LLMs (e.g.,

GPT-4). We have submitted this method to Knowledge-Bsed System (Major Revi-

sion).

7.3 Future Work

In my future work, there are five main directions as follow.

� to make the close loop of Figure 1.1 more stable, practical and convenient. For

example, to enlarge the clinical data pool, to optimise the models based on the

feedback of experts, as well as to improve the adaption and deployability of large

language models on psychotherapy domains.

� to develop advanced parameter-efficient fine-tuning methods that have a faster in-

ference speed and smaller tunable parameters.

� to improve the performance of psychotherapy aiding chatbot on more domains. For

example, auxiliary diagnosis, support of treatment comments, and diary emotion

monitoring.

� to develop bipolar disorders detection system using brain computer interface sys-

tems.

� to develop control algorithms that can control the learning systems of most ANN

models, especially on the application of brain computer interface and large language

models.
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ory using p300 wave in healthy subjects”, in International Congress Series, Else-

vier, vol. 1278, 2005, pp. 7–10.

[151] A. M. Owen, K. M. McMillan, A. R. Laird, and E. Bullmore, “N-back working

memory paradigm: A meta-analysis of normative functional neuroimaging studies”,

Human brain mapping, vol. 25, no. 1, pp. 46–59, 2005.

[152] T. D. Wager and E. E. Smith, “Neuroimaging studies of working memory”, Cog-

nitive, Affective, & Behavioral Neuroscience, vol. 3, pp. 255–274, 2003.

[153] K. Kubota and H. Niki, “Prefrontal cortical unit activity and delayed alternation

performance in monkeys.”, Journal of neurophysiology, vol. 34, no. 3, pp. 337–347,

1971.

[154] J. M. Fuster and G. E. Alexander, “Neuron activity related to short-term memory”,

Science, vol. 173, no. 3997, pp. 652–654, 1971.

[155] U. Leon-Dominguez, J. F. Mart́ın-Rodŕıguez, and J. León-Carrión, “Executive n-
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